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1 Introduction

The paradigm of Compressed Sensing involves the reconstruction of sparse signals from an under-determined
system of linear equations. Typically, the measurements are attributed with Gaussian noise. These systems
can be solved using an appropriately designed cost functions such as LASSO, which are generally convex,
with a standard optimising procedure. Such reconstruction procedures are feasible under two conditions

1. The signal should be sparse enough

2. The number of measurements should be sufficient. This is typically ensured by choosing a measure-
ments matrix that is ‘incoherent’ enough with the signal.

There has been a lot of theory developed that sets up the required conditions for a good reconstruction
under Gaussian noise. In this report, we shall explore the area of Permutation noise in Compressed Sensing.
That is, we try to set up the theory and demonstrate the performance of reconstruction algorithms when
the order of measurements is permuted.

1.1 Compressed Sensing

Let us write down the problem of compressed sensing in terms of a mathematical model. Let x ∈ Rn be
a sparse-vector with support S and sparsity s. Consider a sensing matrix A ∈ Rm×n such that m ≪ n.
Then, the measurements of the signal are denoted by y ∈ Rm defined by

y = Ax (1)

The measurment matrix A is typically chosen to follow the Restricted Isometry Property (RIP) [1] to ensure
the incoherence between the measurements. This property ensures that an under-determined system of
linear measurements is sufficient to reconstruct the true sparse signal, thereby allowing compression.
The RIP property for a matrix A is defined as follows. A matrix A is said to follow RIP of order s if for
any s-sparse vector x, the following holds -

(1− δS)||x||2 ≤ ||Ax||2 ≤ (1 + δS)||x||2 (2)

where, δS is the Restricted Isometry Constant (RIC) of the matrix A. RIP can be ensured by choosing a
measurement matrix sampled from a Gaussian distribution or a Bernoulli distribution.

In general, when the signals are not sparse, the measurement matrix is associated with a transformation
matrix Ψ ∈ Rn×n such that x is sparse under Ψ. That is,

x = Ψθ (3)

where θ ∈ Rn is sparse. Then, the equation modeling this situation would be

y = (AΨ)θ (4)

In this report, we will assume that the signal are sufficiently sparse so that we can do away without any
transformation matrix.
The signal x can be recovered from the measurements y using the following cost function -

min ∥x∥0 subject to y = Ax (5)
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However, this optimisation problem using l0 norm is NP-hard. Therefore, we resort to using a relaxed
version utilisng l1 norm known as Basis Pursuit.

min ∥x∥1 subject to y = Ax (6)

This is a linear optimization problem that can be solved in polynomial time. The solution to the above
optimization problem is exact with probability 1− δ if,

m ≥ C log
(n
δ

)
||x||0µ2(A) (7)

where C is a constant and µ is the incoherence function [1] defined by

µ(A) =
√
n max

1≤j≤m,1≤i≤n
∥⟨Aj , Ii⟩∥ (8)

where Aj is the jth row of A and Ii is the ith column of In×n.

In general, the signals obtained practically are associated with noise which is typically Gaussian. In this
case, the problem model is given by

y = Ax+ η (9)

where η ∈ Rm represents the noise. Then the cost function gets modified as

min ∥x∥1 such that ∥y −Ax∥22 < ϵ (10)

where ϵ ∈ R is chosen based on the upper bound of the magnitude of noise. This equation can be
equivalently stated as

min ∥y −Ax∥22 + λ∥x∥1 (11)

which is famously known as LASSO Optimization. Here, λ is the regularization parameter determined
empirically.

If the matrix A follows RIP of the order 2s where s is the sparsity of x and δ2s <
√
2 − 1, then the error

in the reconstruction is given by

||x∗ − x||2 ≤
C0√
s
||x∗ − xs||1 + C1ϵ (12)

where x∗ is the true solution to y = Ax and C0, C1 are constants independent of n [1].

This optimisation procedure works quite well when the signal has Gaussian independent noise, i.e, η ∼
N (0, σ2). This distribution of noise accommodates most of the noise models we see in signals generally.
However, we shall see that there are scenarios where the noise has more components, such as a heavy tailed
distribution. In such cases, the LASSO cost function does not fare out well and it needs to be modified to
adopt to the noise model. The presence of Permutation noise in the signals highlights such a case.

1.2 Permutation Noise in Compressive Sensing

Permutation Noise refers to the scenarios where the measurements are mislabeled, i.e. the order of mea-
surements is permuted. The motivation for handling such cases arises in many applications. For instance,
a bit-rate reduction in a channel that does not preserve data order. It may also happen in an experimental
setup with a large number of sensors – e.g., a microphone array, due to some handcrafting mistakes in the
wiring between sensors and A/D converters.
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An even more prominent example in the recent cases would be that of group testing for COVID19. Given
n samples, each of which may be diseased or not, group testing aims to determine their health status
indirectly by performing tests on m < n ‘groups’ (also called ‘pools’), where a group is obtained by mixing
a subset of the n samples by testing of m < n groups. Since the number of diseased samples is typically
less, this problem can be modeled as a compressed sensing problem with a sparse vector.
The issue of mislabeling arises when the technician accidentally switches the labels of the group samples.
This situation can occur in non-group testing too.

The methods that have been proposed to deal with this situation typically use brute-force where different
permutations of measurements are explored [3]. We propose a hypothesis testing method using a LASSO
debiasing procedure motivated from the work done in bit-flip noise in group testing.

1.3 Problem Model

Given an s-sparse vector x ∈ Rn and a measurement matrix A ∈ Rm×n, the permuted measurements are
given by

y = PAx (13)

where P ∈ Rm×m is a permutation matrix represented by

P i = Ij (14)

if the measurement i is switched with measurement j where i, j ∈ [m]. The permutation matrix P can be
modified to represent duplication noise too, i.e. the measurements are repeated.

We shall show that this model can be represented by the situation when the noise has a heavy-tailed
distribution component. We shall use the theory derived for heavy-tailed distributions from the bit-flip
noise model to develop a reconstruction algorithm for permuted measurements.
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2 Theory for Permutation Noise

In this section, we present the extension of theory from bit-flip noise to permutation noise. We propose an
algorithm to detect and even correct for the permutation errors.

2.1 Problem Formulation

Like before, let b ∈ Rn be the signal and A ∈ Rm×n be a zero-centered Bernoulli matrix. The measurements
y ∈ Rm are then given by

y = Ab+ η (15)

with a Gaussian noise η ∼ N (0, σ2). In the presence of permutation noise, the ith measurement is switched
with jth measurement. That gives us

y = Ab+ δ + η (16)

= Ãb+ η = (A+∆A)b+ η (17)

where δ ∈ Rm is the error vector for permutation noise. Like before, Ã ∈ Rm×n is the observed sensing
matrix and ∆A ∈ Rm×n represents the error in the sensing matrix.
Note that, we switch the measurements after the Gaussian noise is added. However, since we assume
independent Gaussian noise for each measurement, the final equation can still be represented in such a
manner. That is, permuting the final measurements is equivalent to saying permuting the measurements
before adding the additive noise.

Let the true measurements Ab be represented by z. We then have,

δi =

{
zj − zi ith measurement is switched with jth measurement

0 otherwise
(18)

This also gives us

∆Ai =

{
Aj −Ai ith measurement is switched with jth measurement

0 otherwise
(19)

2.2 Debiasing LASSO

The Huber loss estimator is modeled over the equation given by,

y = Ab+ δ + η (20)

= [A|I]
(
b
δ

)
+ η (21)

= [A|I]x+ η (22)

where x is the concatenation of b and δ.

Let xλ ≜ argminx ∥y − (A|Im×m)x∥2 + λ∥x∥1. Note that, xTλ = (bTλ , b
T
λ ). Then the debiased estimate of x

is given as follows:

xd ≜ xλ +
1

m
M(A|Im×m)T (y − (A|Im×m)xλ), (23)
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where M ∈ R(m+n)×(m+n) is obtained from the approximate inverse of an empirical correlation matrix
Σ̂1 ≜ ATA/m given by M1 obtained from the optimisation formulation given in eqn.(4) of [6]. To be more
specific, M is defined as

M =

[
Mn×n

1 0n×m

0m×n mIm×m

]
(24)

Let x∗ = [b∗; δ∗] represent the true value of x. Note that δ∗ = 0.

We shall now show that the distribution of δ follows the conditions required in Lemma 3. This involves
showing that the expectation of permutation noise goes to 0 asymptotically. We can then use hypothesis
testing to detect permutation noise as we did in bit-flip noise.

2.3 Expectation of the permutation noise

We make the following assumptions to derive the distribution of ∆A.

• (A3) There are t≪ m mislabeled measurements in total

• (A4) Every measurement has an equal probability of being switched with any other measurement.
The switching of measurements is independent of one another.

In such a case, the probability that the ith measurement is switched with the jth is given by 1/m. The
expected value of δi is then given by

E[∆Ai|A] =
1

m

(∑
j ̸=iAj

m− 1
−Ai

)
(25)

Now, when there are t permutations, we get

E[∆Ai|A] =
t

m

(∑
j ̸=iAj

m− 1
−Ai

)
(26)

Notice that the error goes to 0 asymptotically as m → ∞ with the order of o(1/m). Therefore, since
permutation noise satisfies the required properties for Lemma 3, we can use the results from Lemma 4.

2.4 Detection of permuted measurements

As the permutation error satisfies the required properties, we can use Hypothesis testing on the debiased
reconstruction to detect the permuted measurements. From the theorem in bit-flip noise we have

√
m(δd − δ∗)−

√
mA(bd − bλ) ∼ N (0, σ2Σδ) (27)

Furthermore, since we have no information about which measurements are permuted, the null hypothesis
is taken as δi = 0 for all i ∈ [m]. Since if there is no permutation, there should be no effect on the value of
the measurements implying that δ∗i = 0. Based on the debiased lasso estimate of δ∗i , the test statistic for
testing H0 : δ

∗
i = 0 vs H1 : δ

∗
i ̸= 0, is

Di =
[
√
m(δd − δ∗)−∆31]i

σ
√
[Σδ]ii

(28)

where

∆31 =
√
mA(bd − bλ) (29)

Σδ =
(√

mI +AM1A
T /
√
m
) (√

mI +AM1A
T /
√
m
)T

(30)

The expression of Di follows the distribution N (0, 1) under the null hypothesis.
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2.5 Reconstruction of signal

After detecting the noisy measurements using the above test, we can simply choose to drop these measure-
ments. We shall refer to this method as “drop” for lack of a better word.

However, one can also try to correct the permutations after detecting them. The following algorithm
represents a greedy approach to correct the measurements -

Algorithm 1 Correcting for Permutation noise

Input: Measurement vector y, Sensing matrix A, LASSO estimate bλ, debiased estimate bd, α = 1.68, the
set P of detected permuted measurements

Output: Corrected measurement vector yc
yc ← y
for index i ∈ P do

correct index ← i
min ← α
for index j ∈ P do

yc[i]← y[j]
x′λ ← argminx ∥yc − (A|Im×m)x∥2 + λ∥x∥1
D′

i ← [
√
m(δ′d)−A(b′d − b′λ)]i/σ

√
[Σδ]ii

confidence ← α− |D′
i|

if confidence < min then
correct index ← j
min ← confidence

end if
end for
yc[i]← y[correct index]

end for

In the above algorithm, we find the consider each index in the noisy set and switch them with another
index in the set. We choose the measurement which gives the highest confidence for the switch. Then, we
proceed switching every measurement in the noisy set greedily. We shall refer to this method as “corrected”
moving further.

3 Experiments

3.1 Setup and Parameters

We check the performance of the proposed method by comparing the RMSE of the reconstructions ob-
tained with the oracle result. The oracle result refers to the LASSO estimate of the signal when there is
no permutation noise present. We compare the reconstructions while varying different parameters.

All the experiments are performed on signals of dimension n = 128 and n = 256. The non-zero elements
in the signal are chosen from a uniform distribution between 0 and 1. The elements of the sensing matrix
A are drawn i.i.d. from a Bernoulli distribution of −1 and 1 keeping in mind that we need a zero-centered
matrix and also so that A would obey RIP with high probability. The additive noise is added to the
measurements, followed by the permutation of measurements. For permuting the measurements, a set of
measurements whose size is given by the parameter fp is chosen and the measurements in this set are
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permuted randomly.
Keeping all other parameters fixed, we analyse the variation in the curvature with regard to change in (A)
number of measurements m; (B) signal sparsity s expressed as fraction fsp ∈ [0, 1] of signal dimension n;
and (C) the fraction fp ∈ [0, 1] of the m measurements that are permuted.

When the value of n = 128,
For the measurements experiment (i.e. (A)), m is varied in {50, 65, 80, . . . , 125} with fsp = 0.05, fp =
0.05, fσ = 0.05. For the sparsity experiment (i.e. (B)), fsp is varied in {0.01, 0.04, 0.08, . . . , 0.2} with
m = 100, fp = 0.05, fσ = 0.05. For the permutation noise experiment (i.e. (D)), fp is varied in
{0.02, 0.03, 0.05, 0.08, 0.1, 0.12} with m = 100, fsp = 0.05, fσ = 0.05.

When the value of n = 256,
For the measurements experiment (i.e. (A)), m is varied in {100, 120, 140, . . . , 200} with fsp = 0.05,
fp = 0.05, fσ = 0.05. For the sparsity experiment (i.e. (B)), fsp is varied in {0.01, 0.04, 0.08, . . . , 0.2}
with m = 200, fp = 0.05, fσ = 0.05. For the permutation noise experiment (i.e. (D)), fp is varied in
{0.02, 0.03, 0.05, 0.08, 0.1, 0.12} with m = 200, fsp = 0.05, fσ = 0.05. The experiments are repeated over
25 vectors and the RMSE is averaged.

The regularization parameters are chosen via cross validation with the unpermuted measurements with
the validation set containing 20% of the measurements. The validation set is guaranteed to not have any
permutations. This can be ensured in group testing by performing duplicate measurements over these
samples. Cross validation is done with a probability of 40% for each signal sample. The algorithms are
implemented via the cvx package available on MATLAB.

3.2 Results

The results obtained for n = 128 and n = 256 are displayed in figures 1 and 2 respectively.

We have also conducted experiments to see how Precision and Recall of the detection algorithm changes
with respect to the number of measurements, sparsity of signal and the amount of permutation noise. The
results are plotted as heatmaps and are displayed in figures 3 and 4

3.3 Observations

In case of permutation noise, the reconstruction method is very sensitive to the m > (s log n)2 condition.
I have noticed that the cross validation yields poor parameters frequently if this does not hold. To fix this
issue, we ensured that the indices in the validation set do not have any permutation.

Even after ensuring this, the reconstructed δ value has discrepancies which leads to poor recall values. It
is also worth to notice that the precision values are quite high for the method in most scenarios. That
means that the number of false positives is quite low. In contrast, the value of α in Hypothesis testing
has a critical role in determining the number of false negatives. A very high value of α will lead to a large
number of false negatives.

Other than this, we notice the expected trends in the RMSE for each set of experiments. The values of
RMSE should decrease as the number of measurements m increase. They should increase when sparsity
fs or the permutation noise fp increases.
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Figure 1: RMSE comparison between (i) corrected method (ii) drop method (iii) oracle results with respect
to (A) Number of measurements m, (B) Signal sparsity s and (C) Permutation noise fp for n = 128
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Figure 2: RMSE comparison between (i) corrected method (ii) drop method (iii) oracle results with respect
to (A) Number of measurements m, (B) Signal sparsity s and (C) Permutation noise fp for n = 256
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Figure 3: Heatmaps for recall when the fp = 0.1

In almost all the experiments, we see excellent reconstructions with the RMSE rarely crossing 10%. How-
ever, in the experiments where the permutation noise is varied, we see that there are a lot of anomalies in
the trend. The exact cause of this issue is unknown but the very low values of RMSE could be partially
responsible.

Apart from this, we see that the correction algorithm closely matches with the performance of reconstruc-
tions where we drop the noisy measurements. This is partially due to the fact that the number of permuted
measurements is much smaller than the total number of measurements. Also, in some cases dropping mea-
surements also takes care of the additive Gaussian noise being too high. However, this situation is rare
but this might result in poorer performance of the correction method.

In the heatmaps, the results are as expected. The values of recall, precision, specificity and sensitivity
increase as the number of measurements increases and decrease as the sparsity increases.

13



Figure 4: Heatmaps for recall when the fp = 0.15
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4 Double Debiasing for LASSO

4.1 Theory

The LASSO method, although a popular tool for solving compressive linear models, has an inherent bias
that often leads to some error in statistical inference methods. To correct permutation noise in signal
reconstruction, we have debiased the estimate of LASSO (23) to build confidence intervals on the debiased
estimate. Since we use an augmented matrix construction as seen in the Huber Loss formulation (62), we
modified the confidence intervals expression as seen in (28).

Recent work in [10] mentions that the debiased LASSO is not optimal when the number of strong coefficients
dominate the number of weak coefficients. The bias in the strong coefficient increases in the presence of
weak coefficients. This is quite important in our case as we have an augmented vector formulation.

y = [A|I]
(
b
δ

)
+ η

Here, the coefficients in δ can be much larger than the coefficients in b. Although, we have a difference
in magnitude among the coefficients, the number of strong coefficients need not necessarily dominate the
number of weak coefficients. The approach put forward by [10] has the same performance as the debiased
approach in such cases. The following sections will describe the technique and the experimental results
with these methods.

4.2 Bootstrapping the debiased LASSO

Consider the model

y = Ab+ η

where y ∈ Rm, x ∈ Rn, and A ∈ Rm×n is a random matrix chosen with the covariance Σn = ATA/m.
We define a population gram matrix given by Σ = E[Σn] and also define Θ = Σ−1. We shall assume Θ is
known in our case.

Let xu be the initial LASSO estimate with the hyper-parameter λ. We define the correction score W ∈
Rn×m as

Ŵ j =
nPΛjAΘj

X ′
j ∗ PΛAΘj

(31)

where PΛj is a projection operator defined as follows. Consider the support estimated by Lasso given by

Ŝ = {j : xu ̸= 0}. Then, Λj ≜ Ŝ ∩ {−j}. The expression for PΛj is given by

PΛj = In −AΛj (A
T
Λj
AΛj )

−1AT
Λj

(32)

AT
Λj
AΛj is shown to be invertible with a high probability. We want the weights to behave such that

(eTj − wTA/m)S = 0 and (eTj − wTA/m)Sc ≈ 0. From Karush-Kuhn-Tucker conditions, we can see that

(eTj − wTA/m)Ŝ = 0.
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A modified debiased LASSO estimate is calculated as

xd = xu +
W ∗ (y −A ∗ xu)

m
(33)

We compute x∗λ as the LASSO estimate for the measurements A ∗ xu and measurement matrix A. Then,
the bias in xd is estimated as

b = x∗λ +
WA ∗ (xu − x∗λ)

m
− xu (34)

The final bootstrapped-debiased estimate is given by

xdd = xd − b (35)

Then, the confidence intervals on xdd are constructed as

xdd ±
qα/2σ̂∥wj∥2

m
(36)

where σ̂ is any consistent estimator of σ.

4.3 Experiments

The following results are an attempt to replicate the results in [10]. As mentioned in the paper, we choose
n = 300, m = 250, and the design matrix A is chosen such that each row of A is i.i.d from a Gaussian
distribution with mean 0 and covariance matrix Σ = In×n. The signals are generated with a known
noise level σ = 1. We consider 5 levels of sparsity s = [4, 6, 8, 10, 12], and the support for x is chosen as
xs = {4, 2, 4, 2, . . . , 4, 2, 0.2}. The signal is constructed so that the first s − 1 coefficients are strong and
the last one is weak. This can also be verified The debiased estimate is computed using λ = 2σ

√
logn/m

and wj = XΘj . I have also conducted experiments using the correction score mentioned in (31), and used
m = 150 for these experiments due to computational limitations. The experiments have been conducted
on 100 independent iterations, and the bias was calculated using the median of 10 reconstructions in each
iteration. The results are summarised in Figures 5, ??, 7 and 8.

Figure 5: Bias in coefficient with value 4 with wj = XΘj on the left, and wj from (31) on the right
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Figure 6: Bias in coefficient with value 2 with wj = XΘj on the left, and wj from (31) on the right

Figure 7: Bias in coefficient with value 0.2 with wj = XΘj on the left, and wj from (31) on the right

Figure 8: Bias in coefficient with value 0 with wj = XΘj on the left, and wj from (31) on the right
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4.4 Observations

The debiasing experiments require m to be of the order of (s log n)2. However, the parameters used in the
paper are m = 100, n = 300, and s varying between 2 and 16. With the given n and s = 6, the order of
m should approximately be ∼ 1100. There is some flexibility with the constant factor multiplied, but the
conditions for debiasing are constrictive in this manner.

The results with correction scores calculated from (31) are very unstable, and the matrix AT
Λj
AΛj was

displayed as non-invertible frequently. This could be due to m not satisfying the O((s log n)2) condition.

The decrease in bias with the modified debiased approach is very significant as compared to the subse-
quent decrease in bias due to bootstrapped method. The bias in unsupported regions of the signal actually
increased after debiasing, and the bias in the 0.2 coefficient is very high with all three methods.

There is a uniform decrease in bias among the strong coefficients 2 and 4, but this change is miniscule.

4.5 Conclusion

The bootstrapped method correctly addresses the problem of increased bias among the strong coefficients
in the support. This issue could improve the results in permutation noise correction. However, the
improvement in the results as seen in the experiments in not too significant as compared to the debiased
approach. In order to apply the bootstrapped method to permutation noise correction, the theory for
bootstrap debiasing has to be modified to work for our augmented vector cost function formulation.
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5 Theory for Saturation Noise

In practical scenarios, the measurements obtained from sensors may be corrupted by various sources of
noise, including saturation noise caused by the limited dynamic range of the sensors. Saturation noise can
lead to the clipping of measurements, resulting in loss of information and degradation of the quality of the
recovered signal.

5.1 Problem Model

To model the presence of saturation noise, we introduce a clipping function C(·) that maps the noisy
measurements to a finite range. The clipped measurements, denoted as yclip, are given by:

yclip = C(y; a, b), (37)

where C(y, a, b) is a component-wise clipping operation that truncates the values of y to the interval [a, b],
where a and b represent the lower and upper saturation levels, respectively.

5.2 Previous Work

There exists a moderate-sized literature on the problem of compressed sensing (CS) recovery from saturated
measurements, which we summarize here.
The work in [7] proposes two types of estimators for CS recovery from measurements with saturation effects
and uniform quantization (i.e., bounded) noise:
(1) ‘Saturation Rejection’ (SR), which excludes saturated measurements and performs recovery only from
the non-saturated measurements via the estimator:

min ∥x∥1 s.t.
∑
i∈Sns

(
yi −Aix

)2
≤ ϵ2ns (38)

(2) ‘Saturation Consistency’ (SC), which imposes the added constraint in the SR estimator, that the
recovered signal x̂ should obey the conditions:

∀i ∈ S−,A
ix̂ ≤ −(τ −∆) ∀i ∈ S+,A

ix̂ ≥ τ −∆ (39)

where ∆ denotes quantization width.
The SR method may potentially ignore valuable measurements, depending on the relationship between
τ and |x|2. In the worst case, the remaining part of the sensing matrix may not satisfy the Restricted
Isometry Property (RIP) due to an insufficient number of measurements. On the other hand, the SC
method is difficult to adapt to saturation effects with Gaussian noise, which is unbounded in nature.
In recent work by [8, 11], a cost function based on the assumption that set of saturated measurements is
sparse is optimized:

Jss(x) = λ(∥x∥1 + ∥r∥1) + ∥y − (Ax+ r)∥2 (40)

= λ∥x; r∥1 + ∥y − [A|I](x; r)∥2 (41)

where r refers to the error due to saturation effects, (x; r) is the concatenation of column vectors x and
r, I is the identity matrix, and the |r|1 term promotes sparsity of the vector r. We shall refer to this
approach as ‘saturation sparsity’ (SS). Although [8, 11] prove RIP of [A|I], this property is only true in
an asymptotic sense as m → ∞ (with n → ∞ and m/n → 0). In the realistic regime when m is small, it
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has been observed that this technique tends to estimate r as a vector of all zeroes due to the penalty on
|r|1.
In recent work by [15], a greedy approximation algorithm is proposed to minimize the following cost
function, which is designed to be resilient to measurement outliers:

Jα(x) = ∥y −Ax∥p + λ∥x∥0, 0 < p < 1 (42)

An approximation algorithm to minimize such a cost function is essential, as the |x|0 pseudo-norm renders
this problem NP-hard. Note that the approaches in [8, 11, 15] were designed for general impulse noise and
not for saturation effects, and thus do not utilize knowledge of the saturation threshold τ .
Recent work in [4] provides theoretical bounds for the following interesting estimator, termed ’noise-
cognizant ℓ1-minimization (NCLM):

min
x,r

|x|1 such that

(i) C(Ax+ r;−τ, τ) = y,

(ii) |r|2 ≤ γϵ,

(iii) |x|2 ≤ γ′µ
√
m.

The parameters γ, γ′, and µ need to be selected based on properties of the sensing matrix, ϵ is a bound on
∥y −Ax∥2, and the vector r plays the same role as in Eqn. 3. Our method presented in this paper does
not require the choice of so many parameters, nor does it require an upper bound on ∥x∥2.

Recent work in [14] proposes a modification to the LASSO formulation to account for saturation noise.
The data fidelity term, denoted as Jcsc(y;A, τ), is given by:

Jcsc(x;A,y) =
1

2

∑
i∈Sns

(y −Aix)2 +
∑
i∈S+

(τ −Aix)2+ +
∑
i∈S−

(−τ −Aix)2− (43)

where (x)+ = max(0, x) and (x)− = −(−x)+. The cost function becomes zero if the estimated signal falls
outside the saturation levels, as it forces the values in S+ to be higher than τ and the values in S− to
be lower than −τ . However, this also presents a limitation of the method, as it may not be suitable for
accommodating Gaussian noise, as it restricts the signal from adjusting to more continuous and spread-out
distributions of Gaussian noise.

5.3 Likelihood Maximization

Our cost function has been motivated from the likelihood function of the additive Gaussian noise. We have

y = Ax+ η (44)

The cost function is then given by

L(x;A,y) = λ∥x∥1 +
1

2

∑
i∈Sns

(
yi −Aix

σ

)2

−
∑
i∈S+

log

(
1− Φ

(
τ −Aix

σ

))
−

∑
i∈S−

log

(
1− Φ

(
−τ −Aix

σ

))
(45)
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5.4 Theoretical Analysis

To derive the error bounds for our cost functions, we state and prove some important results.

Theorem 1. The cost function L(x;A,y) given by Equation (45) is convex.

We provide the proof for the above theorem and subsequent results in Section B.2. To proceed further, we
define the Restricted Strong Convexity property for the cost function. Denote x̂λ
A loss function L is said to obey the restricted strong convexity (RSC) property with curvature κL > 0
and tolerance function τL(x) if the Bregman divergence of the cost function given by

δL(∆, x) = L(y;Ax̂λ)− L(y;Ax)−∇L(y;Ax)T (∆)

satisfies δL(∆, x) ≥ κL∥∆∥22 − τ2L(x) where ∆ ≜ x̂λ − x and for every vector ∆ ∈ C(S;x) .

The Bregman divergence term essentially is the error between the loss function value at x̂λ and its first
order Taylor series expansion about x.
Intuitively, a loss function that obeys RSC is sharply curved around x, so that any difference in the loss
function ∥L(y;Ax) − L(y;Ax̂λ)∥ will imply a proportional estimation error ∥x − x̂λ∥ for all error vectors
x̂λ − x ∈ C(S;x).

Subsequently, we have the following lemma from [12].

Lemma 1. Let x̂c be the optimum of a general cost function L(y;Ax) + λ∥x∥1 with a regularization
parameter λ ≥ 2∥∇L(y;Ax)∥∞. Then the error vector ∆ = x̂λ − x belongs to the set C(S;x), {∆|∥(x −
x̂λ)∥ ≤ 3∥x − x̂λ∥, where S is the set of indices of the s non-zero elements of x, and ∀i ∈ S, xS(i) = xi;
∀i /∈ S, xS(i) = 0.

Theorem 2 (Theorem 1 of [12]). If Lg is convex, differentiable, and obeys the RSC property with curvature
κ and tolerance τ2(x), and if x̂λ is as defined in Lemma 1 with λ ≥ 2|∇L(y;Ax)|∞, and if x is an s-sparse
vector, then we have -

∥x̂λ − x∥2 ≤
9λ2s

κ2L
+

2λτ2L(x)

κL
(46)

We now state the following theorems pertaining to the cost function in (45) and prove them in B.2.

Theorem 3. L(y,Ax; τ) from Eqn. 8 follows RSC with curvature κ = ϑγ
2 and tolerance function τ2L(x) = 0,

where γ is the restricted eigenvalue constant (REC) for A and ϑ is defined as

ϑ = min(1/2, {f ′′(ξi}i∈S+ , {f ′′(ξi}i∈S−) (47)

The function f : R→ R be defined as
f(x) = − log(Φ(x)) (48)

Proving RSC for our cost function implies that we will reach the global minima.

Theorem 4. For our noise model, the design matrix A and with additional constraints on the signal that
∀i,X1 ≤ xi ≤ X2, we have the lower bound

∥∇L∥∞ ≥
√

mnsϱ log(n)

m
−

 1

σ

∑
i∈S+

AiT+ +
1

σ

∑
i∈S−

AiT−

 (49)
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with probability 2 exp{(−1/2(ρ− 2) log(n))} for constant ρ > 2. Here, mns denotes the number of unsatu-
rated measurements and T+ and T− are defined as

T+ =

√
2

π

e−v22/2

2− αe−βv22/2
(50)

T− =

√
2

π

e−w2
2/2

2− αe−βw2
2/2

(51)

we have ∀i ∈ S+, v
∗
i ≤ v2 and ∀i ∈ S−, w

∗
i ≤ w2 where v∗i ≜ (Aix−τ)/σ for i ∈ S+ and w∗

i ≜ (−τ −Aix)/σ
for i ∈ S−.

In the above expressions, we have the bounds corresponding to S+ and S− of the order O(
√

m+/m) and
O(

√
m−/m) respectively.

We develop this lower bound for ∥∇L∥∞ so that we can apply 2 to find the upper bound on the recon-
struction error.

Theorem 5. Let x̂λ be the minimiser of the cost function in 45 with regularization parameter λ ≥ 2∥∇L∥∞
and with the signal constraints from Theorem 4. Let x be the true s-sparse signal. Then we have the
following upper bound with the same probability as in Theorem 4 -

|xc − x|2 ≤
144s log(n)σ2ρ

γ2m
(
√
mns + C

√
m+ +m−) (52)

The upper bound is directly proportional to s log(n), which is equivalent to the upper bound in Lasso
reconstruction. So, the tightness of the upper bound on the reconstruction error of our cost function is
relatively close to that of Lasso reconstruction. The bound is directly proportional to σ2 as well as s = |x|0
and inversely proportional to γ = REC(A; s) [13, 5], all of which is intuitive. The bound relaxes with an
increase in the number of saturated measurements m+ and m−. If there are no saturated measurements,
i.e., m− = m+ = 0, then the bound reduces to the normal LASSO bound [5], except that here we consider
A with unit column norm as against column norm of m. The bound also increases with mns. However, it
turns out that the constant factor C1 for the O(m1+m2) term in the bounds is very large. This is because
it contains other factors of the form φ(z) or Φ(z), where z stands for either X1 or X2, which are both large
in absolute value. Hence the O(m+ +m−) term dominates over the O(mns) term, which is intuitive.
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6 Experiments

6.1 Signal Reconstruction

We conducted experiments to evaluate the performance of our algorithm for sparse signal reconstruction by
comparing it with five other methods: (i) Saturation Rejection; (ii) Saturation Ignorance; (iii) Saturation
Consistency; (iv) Noise Cognizant L1 Minimization; and (v) Consistent Sparse Coding.

To generate measurements, we randomly drew the elements of the sensing matrix A from N (0, 1
m) so that

A would satisfy the Restricted Isometry Property (RIP) with high probability, and applied it on sparse
signals of dimension n = 256. We then added additive noise independently to each patch and applied the
saturation operator C to the patch. We conducted experiments to analyze the variation in the algorithm’s
performance with respect to three factors: (A) number of measurements m per patch, (B) noise standard
deviation σ expressed as a fraction fσ ∈ [0, 1] of ζ, (C) the sparsity fraction fsp ∈ [0, 1] and (D) the fraction
fsat ∈ [0, 1] of measurements that are saturated. Each experiment has been repeated over 50 independent
signals and measurement matrices.

For the measurements experiment (A), we varied m in the range of {50, 80, 110, . . . , 200} with sp =
25, fsat = 0.15 and fσ = 0.1. For the Gaussian noise experiment (B), we varied fσ in the range of
{0.01, 0.04, 0.07, . . . , 0.19} with fixed m = 180, sp = 25 and fsat = 0.10. For the sparsity experiment (C),
we varied fsp in the range of {0.05, 0.075, . . . , 0.2} with m = 180, fsigma = 0.05, and fsat = 15%. For
the saturation experiment (D), we varied fsat in the range of {0, 0.1, 0.2, . . . , 0.5} with fixed m = 180 and
fσ = 0.1.

To choose the regularization parameters, we employed cross validation with the unsaturated measurements.
The validation set consisted of 20% of the measurements, and we performed cross validation with a prob-
ability of 40% for each patch. The algorithms were implemented using the cvx package in MATLAB.

6.2 Image Reconstruction

We evaluated the performance of our algorithm for image reconstruction by comparing it with five other
methods: (i) Saturation Rejection; (ii) Saturation Ignorance; (iii) Saturation Consistency; (iv) Noise Cog-
nizant L1 Minimization; and (v) Consistent Sparse Coding. We used the Berkeley Image Segmentation
Dataset and divided each image into non-overlapping patches of size 16 × 16, equivalent to a signal with
n = 256. Each patch was reconstructed individually, as the images are sparse in the 2D-DCT (Discrete
Cosine Transform) basis.

To generate measurements, we randomly drew the elements of the sensing matrix A from N (0, 1
m) so that

A would satisfy the Restricted Isometry Property (RIP) with high probability. We then added additive
noise independently to each patch and applied the saturation operator C to the patch. We conducted
experiments to analyze the variation in the algorithm’s performance with respect to three factors: (A)
number of measurements m per patch, (B) noise standard deviation σ expressed as a fraction fσ ∈ [0, 1]
of ζ, and (C) the fraction fsat ∈ [0, 1] of measurements that are saturated.

For the measurements experiment (A), we variedm in the range of 50, 80, 110, . . . , 200 with fixed fsat = 0.15
and fσ = 0.1. For the Gaussian noise experiment (B), we varied fσ in the range of 0.01, 0.04, 0.07, . . . , 0.19
with fixed m = 180 and fsat = 0.10. For the saturation experiment (C), we varied fsat in the range of
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Figure 9: Signal Reconstructions Performance Summary with varying no. of measurements

Figure 10: Signal Reconstructions Performance Summary with varying noise
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Figure 11: Signal Reconstructions Performance Summary with varying sparsity

Figure 12: Signal Reconstructions Performance Summary with varying saturation
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0, 0.1, 0.2, . . . , 0.5 with fixed m = 180 and fσ = 0.1.

To choose the regularization parameters, we employed cross validation with the unsaturated measure-
ments. The validation set consisted of 20% of the measurements, and we performed cross validation with
a probability of 40% for each patch. The algorithms were implemented using the cvx package in MATLAB.

6.3 Audio Declipping

We have also performed experiments to reconstruction audio signals from clipped measurements. Unlike
the previous experiments, this application does not fall under the domain of compressed sensing. We have
a clipped input signal which is compressive in DCT, and we try to reconstruct the unclipped signal. To
measure the amount of saturation in the signal, we use the metric SDR defined by

SDR(x̂,x) = 20 log
∥x∥22
∥x− x̂∥22

(53)

where x̂ is the noisy signal, and x is the true signal.

To reconstruct the signal x̂ , we take the clipped signal of length T and divide it into n segments, each
of length m, with overlaps between the adjacent segments, using a sliding window. For example, if the
clipped signal has 65536 samples, we can form x as a matrix 256× 511, using a sliding window of m = 256
samples with a hop size equal to 128. In the experiments, the clipping level τ is set using a routine from
[9], which takes an input SDR and outputs the clipping level. The clean signal was normalized before
Gaussian noise was added and subsequently being clipped at the specified level.

We compare our data-fidelity function with the CSC fidelity term using a music signal “mono-8000hz.mp3”.
This signal contain single channel recordings, sampled at 8 kHz. The input SNR is varied from {4, 6, 8, 10,
12, 15, 20}, and the results are displayed in Figure 16, 17.

Figures 18, 19 show how the waveform changes after clipping and after reconstruction with each method.
I had also explored dictionary learning techniques to learn the dictionary for the audio data on the fly.
The SAD approach as proposed by [9] uses a transfer learning framework with the CSC cost function. It
is extremely efficient as the iterations use a closed-form solution for the sparse-coding step. I designed a
dictionary learning procedure for both the data-fidelity terms but they did not yield as good results as
expected.

26



Figure 13: Image Reconstructions Performance Summary with varying number of measurements
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Figure 14: Image Reconstructions Performance Summary with varying additive noise
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Figure 15: Image Reconstructions Performance Summary with varying saturation
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Figure 16: Audio Declipping Performance Summary with varying input SNR

Figure 17: Audio Declipping Performance Summary with varying amount of Saturation

Figure 18: Complete Audio Waveform after clipping and reconstruction with both methods
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Figure 19: Audio Waveform from t = 46850 to t = 47000 after for both methods
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A Details for bit-flip noise

A.1 Problem Formulation

The representation of the group-testing scenario is done as follows - Let b ∈ Rn be the vector of samples
of n individuals. Let there be m groups. The presence of the ith sample in the jth group is represented
by a binary vector - the ith element is set to 1 and the rest are set to 0 in a vector of length n.

Once the groups are made, all the samples in a group are mixed together and tested. This setup is given
by a pooling matrix B ∈ Rm×n whose ith row has the members in the ith group in binary representation.

Bij ≜

{
1 if ith sample belongs to jth group

0 otherwise
(54)

That is, the pooling matrix B is a Bernoulli sampled matrix (note that, such matrices generally follow
RIP). The grouped samples vector z along with the noise η′ is then given by

z = Bb+ η′ (55)

The noise associated with infection samples in COVID is modeled as a multiplicative Gaussian noise which
is dependent on the value of the measurements. However, we will assume that it is independent Gaussian
additive noise for simplicity.

Now, a bit-flip occurs when a member belonging to one group is switched with an other member who does
not belong to the group. In such a case, the measurements we obtain are given by

z = B̃b+ η′

= (B +∆B)b+ η′

= Bb+ δ′ + η′

where B̃ is the observed pooling matrix. Let i, j ∈ [n] be such that i belongs to the kth group and j does
not belong in the group. Then, a bit-flip is said to occur if the technician places j in the group instead of
i. We have Bik = 1, Bjk = 0 and B̃ik = 0, B̃jk = 1.

A.2 Centering the pooling matrix

The method we develop for correcting for bit-flip errors uses the Huber Loss function and debiasing of
LASSO. These results require the pooling matrix to have zero mean. We obtain the zero mean matrix
using the Ai = 2Bi − 1t. Then,

yi = 2(zi − z̄i) = 2(B̃ib+ η′i)− b

= (2Bi − 1t)b+ 2δ′i + 2η′i

= Aib+ δi + ηi

where yi is the ith zero-centered measurement. The elements of the matrix A are either 1 or −1.
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A.3 Expectation of the bit-flip noise

The bit-flip noise is mathematically denoted as δ ≜ (Ã−A)b = ∆Ab where Ã is the nominal centered matrix
after the bit-flips have occurred and A is the true centered matrix. We make the following assumptions to
derive the distribution of δ.

• (A1) There are at most t≪ m bit-flip errors in the pooling matrix

• (A2) The probability of a bit-flip occuring in each row is independent of the other rows and is
uniform across all rows

Suppose there is a single bit-flip between the columns i and j on the kth row. Then, the probability of
this happening is given by

P (flip of i and j on kth row) =
1

m×
(
n
2

) (56)

This is because every row and every pair of samples have an equal probability of having a flip. The
structure of ∆A in this case would be

∆(A)i1j1 =

{
0 i1j1 ̸= ik and i1j1 ̸= jk

−2Ai1j1 otherwise
(57)

We then get

E[∆A|A] =
1

m×
(
n
2

) ×−2A (58)

In the presence of t bit-flips, the expectation becomes

E[∆A|A] =
−2t

m×
(
n
2

) ×A (59)

We shall state the following result without proof -

Lemma 2. Under the conditions that t≪ n, ∥b∥2 ≤ ϱ2 for some ϱ2 > 0 and 0 ≤ Cmin ≤ λmin(E(ATA)) ≤
max(E(ATA)) ≤ Cmax <∞, we have ∥E(AT (δ + η))∥2 is o(1/m)

A.4 Huber Loss formulation

The equation of centered measurements is given by

y = Ab+ δ + η (60)

This equation can be modified as
y = [A|Im×m]x+ η (61)

where x is the concatenation of the vectors b and δ. The LASSO estimate for this equation is given by

x̃ ≜ argmin
x
∥y − (A|Im×m)x∥22 + ∥b∥1 +

1

α
∥δ∥1 (62)

This can be rewritten as follows. We are trying to optimise

min
b,δ
∥y − (A|Im×m)x∥22 + ∥b∥1 +

1

α
∥δ∥1

=min
b

{
∥b∥1 +

{
min
δ
∥(y −Ax)− δ∥22 +

1

α
∥δ∥1

}}
=min

b

{
∥b∥1 +

1

m

m∑
i=1

Hα(yi −Aib)

}
This gives us the Huber loss formulation. We then have the following result.
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Lemma 3. If Lemma 2 holds along with

1. E
{
E(|δ + η|k|A)

}
≤Mk <∞, for some k ≥ 2

2. 0 ≤ Cmin ≤ λmin(E(ATA)) ≤ λmax(E(ATA)) ≤ Cmax <∞

3. For any vRp, AT v is sub-Gaussian with parameter atmost κ20,

then there exists a universal constant C such that,

∥b∗α − b∥2 ≤
2αk−1

k − 1
[
√
Mk + Cκk0]

√
Cmax

Cmin
+

4s(
n
2

)
m

Cmax

Cmin
∥b∥2 (63)

where b∗α = argminbE{Hα(y −Ab)}

A.5 Debiasing LASSO for δ

The LASSO estimator has a bias incurred due to the l1 penalty term. [6] provides a method to remove
the bias and upon eliminating the bias the debiased lasso estimator has a normal distribution. We will use
this property to perform Hypothesis testing to detect the bit-flip errors.

Let xλ ≜ argminx ∥y − (A|Im×m)x∥2 + λ∥x∥1. Also, Σ̂ ≜ (A|Im×m)T (A|Im×m)/m. We then have the
following result -

Lemma 4. For a chosen inverse M ∈ R(m+n)×(m+n), we have,
√
m(xd − x∗) = Z +∆ (64)

where,

Z ∼ N (0, σ2MΣMT ) (65)

∆ =
√
m(MΣ− I)(x∗ − xλ) (66)

Z and ∆ denote the bias in xλ in the above equations. Upon using the structure of M stated in equation
24, we further get the following results assuming some conditions that are omitted here for simplicity -

Lemma 5. Suppose m > (s log n)2 and t <
√
n.

Define the following -

1. Z1 ≜ M1A
T η/
√
m and Z2 ≜

√
mη such that Z = (ZT

1 Z
T
2 )

T

2. ∆1 ≜
√
m(bd − b∗)− Z1 and ∆3 ≜

√
m(δd − δ∗)− Z2 =

√
mA(b∗ − bλ) such that ∆ = ∆1 +∆3.

then we have

1. ∆1 is asymptotically smaller than Z1 as Z1 has the order Op(1) whereas ∆1 has the order op(1).
Under asymptotic conditions, √

m(bd − b∗) = Z1 (67)

We get these results using Lemma 3

2. Define ∆32 ≜
√
mA(bd − b∗) = Z1 + ∆1. Since ∆1 is negligible wrt Z1, we asymptotically have

∆32 = Z1.

3. As a result, we have
Z2 +∆32 ∼ N (0, σ2Σδ) (68)

where Σδ =
(√

mI +AM1A
T /
√
m
) (√

mI +AM1A
T /
√
m
)T
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B Saturation Noise Bounds

B.1 Convexity

For the ease of proving results, we shall use the following notation for the cost function.

L(x;A, y) = L1(x;A, y) + L2(x;A, y) + L3(x;A, y) (69)

where

L1(x;A, y) =
∑
i∈Sns

(yi −Aix)2

2σ2
(70)

L2(x;A, y) = −
∑
i∈S+

log

(
1− Φ

(
τ −Aix

σ

))
(71)

L3(x;A, y) = −
∑
i∈S−

log

(
Φ

(
−τ −Aix

σ

))
(72)

To prove that the cost function is convex, we will show that each of these cost functions is convex by
showing that the corresponding Hessian matrices are positive semi-definite. The cost function L1 is convex
because ∂L1/∂x∂x

T =
∑

i∈Sns
Ai(Ai)T , which is positive semi-definite. Denote vi = (Aix − yi)/σ. Now,

we have the following

∂L2(x)

∂x
=
−1
σ

∑
i∈S+

Aiϕ(vi)

Φ (vi)
(73)

This further gives -

∂L2(x)

∂x∂xT
=

1

σ2

∑
i∈S+

Ai(Ai)Tϕ(vi)

(
ϕ(vi) + viΦ(vi)

Φ(vi))2

)
(74)

In the above expression, the terms Ai(Ai)T , ϕ(vi) and Φ(vi)) are positive. It will suffice to show that the nu-
merator in the expression is positive. Denote h(v) = ϕ(v)+vΦ(v). Then, h′(v) = −vϕ(v)+Φ(v)+vϕ(v) =
Φ(v) > 0. Also, limv→−∞ h(v) = 0 as both ϕ(v) and Φ(v) go to 0 as v decreases and the rate of convergence
of Φ(v) → 0 is faster than that of v → ∞. Since h(v) is an increasing function bounded below by 0, we
have h(v) ≥ 0 for all v ∈ R. Consequently, this establishes that L2 is convex.

The convexity of L3 can be established in a similar manner. Define wi = −Aix− τ . We have,

∂L3(x)

∂x∂xT
=

1

σ2

∑
i∈S−

Ai(Ai)Tϕ(wi)

(
ϕ(wi) + wiΦ(wi)

Φ(wi))2

)
(75)

As proved above, this function is positive as well, implying that L2 is convex. Finally, since L1, L2, and
L3 are convex, the cost function L is convex.
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B.2 Restricted Strong Convexity

We will now show the property of restricted strong convexity of the cost function. To do so, we state the
definition of Bregman divergence of a cost function L with respect to a ∆ ∈ Rn

δL(x∗,∆) = L(x∗ +∆)− L(x∗)− ⟨∆,∇L(x∗)⟩

The cost function L is said to follow restricted strong convexity if the following holds

δL(x∗,∆) ≥ κL∥∆∥22 − τ2L(x
∗) (76)

for the curvature term κL > 0 and a positive tolerance function τL for ∆ ∈ C such that
C ≜ {∆ : ∥∆Sc∥1 ≤ 3∥∆S∥2 + 4∥x∗

Sc∥1}. Here S stands for the set of indices of the s largest entries of
the true signal x∗, and Sc is the complement of S. Since we are dealing with purely sparse signals, S
would correspond to the support of x∗ and x∗

Sc = 0. However, extensions to weakly sparse signals are
straightforward.

B.3 Bregman divergence calculation

We have the following relation

δL(x∗,∆) = δL1(x
∗,∆) + δL2(x

∗,∆) + δL3(x
∗,∆)

We shall derive expressions of each of the terms independently.

B.3.1 Bregman divergence of L1

We have

L1(x;A, y) =
∑
i∈Sns

(Aix− yi)
2

2σ2 (77)

Therefore,

∇L1(x;A, y) =
∑
i∈Sns

(Aix− yi)

σ
Ai (78)

We then get,

δL1(x,∆) =
∑
i∈Sns

[
(Ai(x+∆)− yi)

2

2σ2
− (Aix− yi)

2

2σ2
− Ai∆

σ
(Aix− yi)

]

=
∑
i∈Sns

∥Ai∆∥2

2σ2

=
∑
i∈Sns

k2i
2

(79)

where ki = Ai∆/σ for i ∈ Sns.
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B.3.2 Bregman divergence of L2

We have

L2(x;A, y) = −
∑
i∈S+

log

(
1− Φ

(
τ −Aix

σ

))

= −
∑
i∈S+

log

(
Φ

(
Aix− τ

σ

)) (80)

Therefore,

∇L2(x;A, y) = −
∑
i∈S+

ϕ
(
Aix−τ

σ

)
Φ
(
Aix−τ

σ

)Ai (81)

The expression for δL2(x,∆) is given by,

δL2(x,∆) =
∑
i∈S+

[
− log

(
Φ

(
Ai(x+∆)− τ

σ

))
+ log

(
Φ

(
Aix− τ

σ

))

+
Ai∆

σ

ϕ
(
Aix−τ

σ

)
Φ
(
Aix−τ

σ

)] (82)

To simplify the notation, define vi = (Aix− τ)/σ and ki = Ai∆/σ.
Let v = [v1, . . . , vm] and k = [k1, . . . , km]. We then have,

δL2(v, k) =
∑
i∈S+

− log(Φ(vi + ki)) + log(Φ(vi)) + ki
ϕ(vi)

Φ(vi)
(83)

We shall use Taylor’s series expansion to simplify this expression. Let the function f : R → R be defined
as follows

f(x) = − log(Φ(x)) (84)

The Taylor series expansion of the function for d ∈ R is given by

f(x+ d) = f(x) + df ′(x) +
d2

2
f ′′(ξ)

− log(Φ(x+ d)) = − log(Φ(x))− d
ϕ(x)

Φ(x)
+

d2

2

ϕ(ξ)

Φ(ξ)

(
ϕ(ξ)

Φ(ξ)
+ ξ

) (85)

for ξ ∈ [x, x+ d]. Applying the expansion at vi and vi + ki for each i ∈ S+, we get

− log(Φ(vi + ki)) = − log(Φ(vi))− ki
ϕ(vi)

Φ(vi)
+

k2i
2

ϕ(ξi)

Φ(ξi)

(
ϕ(ξi)

Φ(ξi)
+ ξi

)
− log(Φ(vi + ki)) + log(Φ(vi)) + ki

ϕ(vi)

Φ(vi)
=

k2i
2

ϕ(ξi)

Φ(ξi)

(
ϕ(ξi)

Φ(ξi)
+ ξi

) (86)
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Summing across all i ∈ S+,∑
i∈S+

[
− log(Φ(vi + ki)) + log(Φ(vi)) + ki

ϕ(vi)

Φ(ki)

]
=

∑
i∈S+

[
k2i
2

ϕ(ξi)

Φ(ξi)

(
ϕ(ξi)

Φ(ξi)
+ ξi

)]

δL2(v, k) =
∑
i∈S+

[
k2i
2

ϕ(ξi)

Φ(ξi)

(
ϕ(ξi)

Φ(ξi)
+ ξi

)]

=
∑
i∈S+

k2i
2
f ′′(ξi)

(87)

for each ξi ∈ [vi, vi + ki]. Note that ki need not be positive.

B.3.3 Bregman divergence of L3

Similar to the previous case, we have

L3(x;A, y) = −
∑
i∈S+

log

(
Φ

(
−τ −Aix

σ

))
(88)

Therefore,

∇L3(x;A, y) =
∑
i∈S+

ϕ
(
−Aix−τ

σ

)
Φ
(
−Aix−τ

σ

)Ai (89)

The expression for δL3(x,∆) is given by,

δL3(x,∆) =
∑
i∈S+

[
− log

(
Φ

(
−Ai(x+∆)− τ

σ

))
+ log

(
Φ

(
−Aix− τ

σ

))

− Ai∆

σ

ϕ
(
−Aix−τ

σ

)
Φ
(
−Aix−τ

σ

)] (90)

To simplify the notation, define wi = (−Aix− τ)/σ and ki = Ai∆/σ as before.
Let w = [w1, . . . , wm] and k = [k1 . . . km]. We then have,

δL3(v, k) =
∑
i∈S−

− log(Φ(wi − ki)) + log(Φ(wi))− ki
ϕ(wi)

Φ(wi)
(91)

Like before, the Taylor series expansion of f at x and x+ d is given by

f(x+ d) = f(x) + df ′(x) +
d2

2
f ′′(ξ)

− log(Φ(x+ d)) = − log(Φ(x))− d
ϕ(x)

Φ(x)
+

d2

2

ϕ(ξ)

Φ(ξ)

(
ϕ(ξ)

Φ(ξ)
+ ξ

) (92)

for ξ ∈ [x, x+ d]. We apply the expansion at wi and wi − ki for each i ∈ S−, we get

− log(Φ(wi − ki)) = − log(Φ(wi)) + ki
ϕ(wi)

Φ(wi)
+

k2i
2

ϕ(ξi)

Φ(ξi)

(
ϕ(ξi)

Φ(ξi)
+ ξi

)
− log(Φ(wi − ki)) + log(Φ(wi))− ki

ϕ(wi)

Φ(wi)
=

k2i
2

ϕ(ξi)

Φ(ξi)

(
ϕ(ξi)

Φ(ξi)
+ ξi

) (93)
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Summing across all i ∈ S−,∑
i∈S−

[
− log(Φ(vi + ki)) + log(Φ(vi)) + ki

ϕ(vi)

Φ(ki)

]
=

∑
i∈S−

[
k2i
2

ϕ(ξi)

Φ(ξi)

(
ϕ(ξi)

Φ(ξi)
+ ξi

)]

δL3(v, k) =
∑
i∈S−

[
k2i
2

ϕ(ξi)

Φ(ξi)

(
ϕ(ξi)

Φ(ξi)
+ ξi

)]

=
∑
i∈S−

k2i
2
f ′′(ξi)

(94)

for each ξi ∈ [wi, wi − ki].

B.4 Curvature Calculations

From the above derivations, we have

δL1(x
∗,∆) =

∑
i∈Sns

k2i
2

δL2(x
∗,∆) =

∑
i∈S+

k2i
2
f ′′(ξi)

δL3(x
∗,∆) =

∑
i∈S−

k2i
2
f ′′(ξi)

(95)

where k = A∆/σ, v∗ = (Ax∗−τ)/σ and w∗ = (−Ax∗−τ)/σ. ξi ∈ [v∗i , v
∗
i+ki] for i ∈ S+ and ξi ∈ [w∗

i , w
∗
i−ki]

for i ∈ S−.

Using these expressions, the value of δL(x∗,∆) is given by

δL(x∗,∆) = δL1(x
∗,∆) + δL2(x

∗,∆) + δL3(x
∗,∆)

=
∑
i∈Sns

k2i
2

+
∑
i∈S+

k2i
2
f ′′(ξi) +

∑
i∈S−

k2i
2
f ′′(ξi)

≥ min(
1

2
, {f ′′(ξi)}i∈S+ , {f ′′(ξi)}i∈S−)

∑
i∈[m]

k2i
2

(96)

We shall denote ϑ = min(1/2, {f ′′(ξi}i∈S+ , {f ′′(ξi}i∈S−). Then, using the REC property of the matrix A,
we get

δL(x∗,∆) =≥ ϑ
∑
i∈[m]

k2i
2

≥ ϑ

2
∥A∆∥22 =

ϑγ

2
∥∆∥22

(97)

Plugging this equation into (76), we get κ = ϑγ/2 and τ(x) = 0 for x ∈ R.
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B.5 Comparison of Bregman divergence with Saturation Rejection

The cost function in Saturation Rejection is given by

LSR(x;A, y) =
∑
i∈Sns

1

2

(Aix− yi)
2

σ2

= L1(x;A, y)

(98)

If we do the similar calculations for this cost function, we get the Bregman divergence expression as

δLSR(x,∆) =
∑
i∈Sns

[
(Ai(x+∆)− yi)

2

2σ2
− (Aix− yi)

2

2σ2
− Ai∆

σ
(Aix− yi)

]

=
∑
i∈Sns

∥Ai∆∥2

2σ2

(99)

We can see from 96 that this value is lower than that of our method. Therefore, the curvature values of
Saturation Rejection will also be lower. We have verified this empirically in the following experiments.

B.5.1 Experimental Comparison

Here we present the empirical curvature values for both SR and LM and compare them for different
parameters. The empirical calculation is done as follows -

δL(x∗;A, y) = κ∥∆∥22 − τ2L(x
∗)

δL(x∗;A, y) ≤ κ∥∆∥22
κ ≥ δL(x∗;A, y)/∥∆∥22

(100)

We do the same for Saturation rejection, and plot the values of empirical κ for both. The results are shown
in Figure [20]

All the experiments are performed on signals of dimension n = 256. The elements of the sensing matrix A
are drawn i.i.d. from N (0, 1

m) so that A would obey RIP with high probability. The additive noise is added
to the measurements, followed by application of the saturation operator C. Keeping all other parameters
fixed, we analyse the variation in the curvature with regard to change in (A) number of measurements m;
(B) signal sparsity s expressed as fraction fsp ∈ [0, 1] of signal dimension n; and (C) the fraction fsat ∈ [0, 1]
of the m measurements that are saturated. For the measurements experiment (i.e. (A)), m is varied in
{50, 75, 100, . . . , 250} with s = 25, fsat = 0.15, fσ = 0.1. For the sparsity experiment (i.e. (B)), fsp is
varied in {5, 8, 11, . . . , 32}/256 with m = 150, fsat = 0.15, fσ = 0.1. For the saturation experiment (i.e.
(D)), fsat was varied in {0, 0.05, 0.1, . . . , 0.5} with m = 150, fsp = 25/256, fσ = 0.1. The curvature is
computed over reconstructions from 100 signal samples.
The regularization parameters are chosen via cross validation with the unsaturated measurements with the
validation set containing 20% of the measurements. Cross validation is done with a probability of 40% for
each signal sample. The algorithms are implemented via the cvx package available on MATLAB.

C Gradient Bounds

The gradient of the cost function is given by

∇L(x;A, y) = ∇L1(x;A, y) +∇L2(x;A, y) +∇L3(x;A, y) (101)
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Figure 20: Empirical Curvature comparison of LM and SR wrt (A) Number of measurements m, (B) Signal
sparsity s and (C) Saturation noise fsat
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∇L1(x;A, y) =
1

σ

∑
i∈Sns

AiA
ix− yi
σ

(102)

∇L2(x;A, y) = −
1

σ

∑
i∈S+

Ai
ϕ
(
Aix−τ

σ

)
Φ
(
Aix−τ

σ

) (103)

∇L3(x;A, y) =
1

σ

∑
i∈S−

Ai
ϕ
(
−τ−Aix

σ

)
Φ
(
−τ−Aix

σ

) (104)

We will derive the lower bounds for each of these terms and then use the triangle inequality to find the
global lower bound for the gradient. To do so, we require the following lemmas.

Lemma 6. The expression 1− α
2 exp

(
−βu2

)
is non-negative when u ≥ 0, β > 1 and 0 < α ≤

√
2e
π

√
β−1
β .

Proof. From [2], we have that erfc(x) ≥ αe−βx2
when x ≥ 0, β > 1 and 0 < α ≤

√
2e
π

√
β−1
β .

Using the definition of erfc(u), for any u ≥ 0 we have

2(1− Φ(
√
2u)) ≥ α exp

(
−βu2

)
1− Φ(

√
2u) ≥ α

2
exp

(
−βu2

)
0 ≤ Φ(

√
2u) ≤ 1− α

2
exp

(
−βu2

)

Lemma 7. The inverse Mill’s ratio ϕ/Φ has the following bounds

ϕ(u)

Φ(u)
≥

√
2

π

e−u2
2/2

2− αe−βu2
2/2

, 0 ≤ u ≤ u1 (105)

ϕ(u)

Φ(u)
≥

√
2

π

e−u2
3/2

2− αe−βu2
3/2

, u2 ≤ u ≤ 0 (106)

where u1, u2 ∈ R

Proof. From the previous lemma, when u ≥ 0, β > 1 and 0 < α ≤
√

2e
π

√
β−1
β , we have

0 ≤ Φ(
√
2u) ≤ 1− α

2
exp

(
−βu2

)
1

Φ(u)
≥ 1

1− α
2 exp(−βu2/2)

ϕ(u)

Φ(u)
≥

1√
2π

exp
{
(−u2/2)

}
1− α

2 exp(−βu2/2)

(107)

Now, let us consider the first case where 0 ≤ u < u1 for some u1 ∈ R.
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0 ≤ u < u1 (108)

−u21 ≤− u2 ≤ 0 (109)√
1

2π
exp

{
(−u22)

}
≤

√
1

2π
exp

{
(−u2)

}
≤ 1 (110)

0 ≤ 1− α

2
exp

{
(−βu2/2)

}
≤ 1− α

2
exp

{
(−βu21/2)

}
Lemma 1 (111)

0 ≤ 1

1− α
2 exp

{
(−βu21/2)

} ≤ 1

1− α
2 exp{(−βu2/2)}

(112)

Using (107), (110) and (112) from the above set of steps, we obtain

ϕ(u)

Φ(u)
≥

√
2

π

e−u2
1/2

2− αe−βu2
1/2

, 0 ≤ u < u1 (113)

For u2 ≤ u ≤ 0,

u2 ≤ u ≤ 0 (114)

−u22 ≤− u2 ≤ 0 (115)√
1

2π
exp

{
(−u22)

}
≤

√
1

2π
exp

{
(−u2)

}
≤ 1 (116)

0 ≤ 1− α

2
exp

{
(−βu2/2)

}
≤ 1− α

2
exp

{
(−βu22/2)

}
Lemma 1 (117)

0 ≤ 1

1− α
2 exp

{
(−βu22/2)

} ≤ 1

1− α
2 exp{(−βu2/2)}

(118)

Using (107), (116) and (118) from the above set of steps, we obtain

ϕ(u)

Φ(u)
≥

√
2

π

e−u2
2/2

2− αe−βu2
2/2

, u ≤ u2 ≤ 0

Moving forward, we shall use the same notation as before - vi ≜ (Aix − τ)/σ for i ∈ S+ and wi ≜
(−τ −Aix)/σ for i ∈ S−.

In order to bound the gradient of the cost function, we shall assume that the true signal x∗ lies between
two values X1 and X2. That is, ∀i ∈ [n], X1 ≤ x ≤ X2.

C.1 Bound for ∇L1

We have

∇L1(x;A, y) =
1

σ

∑
i∈Sns

Ai

(
Aix− yi

σ

)

Let A1 be the sub-matrix of A consisting of only the rows with non-saturated entries, defined by A1 ≜
[Aj |j ∈ Sns]. Let mns denote the number of non-saturated entries. The jth term of the gradient is
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−(Aj
1)

T z ∼ N (0, ∥Aj
1∥2) where zi ≜ yi−Ai

1x ∼ N (0, σ2). This is due to the property of linear combination
of normal variables. Also, assuming the entries of A are sampled from the distribution N (0, 1/m), we can
write m(Aij

1 ) ∼ χ2
1 and

[
m

∑
i∈Sns

(Aij
1 )

2

]
∼ χ2

m′

E

[
m

∑
i∈Sns

(Aij
1 )

2

]
= mns =⇒ ∥Aj

1∥
2
2 ≈

mns

m

Hence, approximately

−(Ai
1)

T z ∼ N (0,
mnsσ

2

m
)

The Gaussian concentration bound for the gradient is given by,

P
[
|(Ai

1)
T z| ≥ u

]
≤ 2 exp

(
− u2m

2mnsσ2

)
Then, using union bound,

P
[
∥AT

1 z∥∞ ≥ u
]
≤ 2 exp

(
− u2m

2mnsσ2
+ log(n)

)
Define ϱ ≜ u2m/mnsσ

2 log(n). The above bound is useful when ϱ > 2. We then have,

P

[
∥AT

1 z∥∞ ≥
√

mnsϱ log(n)

m

]
≤ 2 exp

(
−1

2
(ϱ− 2) log(n)

)

P

[
∥AT

1 z∥∞ ≤
√

mnsϱ log(n)

m

]
≥ 1− 2 exp

(
−1

2
(ϱ− 2) log(n)

)
Therefore,

∥∇L1(y;A, x)∥∞ ≤
√

mnsϱ log(n)

m

with probability at least 1− 2 exp
(
−1

2(ϱ− 2) log(n)
)
.

C.2 Bound for ∇L2

We have

∇L2(v) = −
1

σ

∑
i∈S+

Ai ϕ(vi)

Φ(vi)
(119)
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For the true signal x∗, we have

X1 ≤x∗j < X2 (120)∑
j,Aij>0

AijX1 +
∑

j,Aij≤0

AijX2 ≤
n∑

j=1

Aijx∗j <
∑

j,Aij>0

AijX2 +
∑

j,Aij≤0

AijX1 (121)

(p1)i ≤Aix < (p2)i renaming for convenience (122)

(p1)i − τ

σ
≤Aix∗ − τ

σ
<

(p2)i − τ

σ
(123)

(v1)i ≤v∗i < (v2)i (124)

Also, v∗i ≥ 0. Let v2 = maxi(v2)i, then ∀i ∈ S+, v
∗
i ≤ v2. Using Lemma 7 on each individual term, we get

for i ∈ S+

ϕ(vi)

Φ(vi)
≥

√
2

π

e−v22/2

2− αe−βv22/2
= T+ (125)

Note that T+ is a function of A. Then,

∇L2(v) ≥ −
1

σ

∑
i∈S+

AiT+ (126)

Also, v2 is of the order O(
√
m+/m) since (p2)i is summation of m1 Gaussian variables, and its distribution

is given by N (0, C ∗m+/m) for some C > 0 where m+ is the number of positively saturated measurements.

C.3 Bound for ∇L3

We will similarly lower bound L3 like above. We have

∇L3(v) =
1

σ

∑
i∈S−

Ai ϕ(wi)

Φ(wi)
(127)

For the true signal x∗, we have

X1 ≤x∗j < X2 (128)∑
j,Aij>0

AijX1 +
∑

j,Aij≤0

AijX2 ≤
n∑

j=1

Aijx∗j <
∑

j,Aij>0

AijX2 +
∑

j,Aij≤0

AijX1 (129)

(p3)i ≤Aix < (p4)i renaming for convenience (130)

−(p4)i − τ

σ
≤−A

ix∗ − τ

σ
<
−(p3)i − τ

σ
(131)

(w1)i ≤w∗
i < (w2)i (132)

Also, w∗
i ≥ 0. Let w2 = maxi(w2)i, then ∀i ∈ S−, w

∗
i ≤ w2. Then ∀i ∈ S−,

ϕ(wi)

Φ(wi)
≥

√
2

π

e−w2
2/2

2− αe−βw2
2/2

= T− (133)

Note that T− is a function of A. Then,

∇L3(v) ≥
1

σ

∑
i∈S−

AiT− (134)

Also, w2 is of the order O(
√

m−/m) similarly.
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