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Abstract—The following report summarises the traditional
state-of-the-art approaches for the Low-Rank Matrix Recovery
Problem. This problem is described using the so called Robust
Principal Pursuit formulation. The optimization procedures
in the literature approximate the problem and use proximal
gradient and alternating minimization methods to obtain the
solution. We analyse the performance of these procedures on
a dual formulation for the optimization problem and extend
these techniques to applications such as foreground separation
and time-series analysis as our contribution. Furthermore,
we comment on the implementation issues for each of these
procedures and their practicality for the discussed applications.
The GitHub repository can be found here

I. INTRODUCTION

A. Motivation

Accurately reconstructing low-rank matrices is a fundamental
problem that shows up in many applications such as feature
detection in video footage [1], structure from motion for
3D object tracking [2], camera calibration with distortion
[3], etc. In this paper we will approach this problem along
with its extensions using primal-dual formulations and
applications.

Formally, given a data matrix D, we aim to decompose it to
a low-rank matrix L and a sparse matrix S. For example, in
the application of foreground and background separation in a
video, the data matrix is formed by concatenating the column
vectors corresponding flattened frames. The background in
the frames would correspond to the low-rank matrix because
there are minimal changes in the background. On the other
hand, foreground, which occupies very few pixels in the
video feed corresponds to the sparse matrix.

The optimization procedure associated with Low-Rank matrix
recovery is referred to as Robust Principal Component
Analysis problem given by -

min
L,S
∥L∥∗ + λ|S|1, (1)

such that D = L+ S

where ∥L∥∗ refers to the Nuclear norm of L equivalent to
sum of all of its singular values. Using rank of L directly
makes this problem NP-hard, and these relaxations make
the problem feasible with standard optimization techniques.
Furthermore, |S|1 is the l1 norm of S representing the sum
of absolute values in S. The actual low-rank matrix recovery
problem involving the rank of the matrix L is NP-hard, and
this relaxation is shown to be good approximation for the
problem in [4].

At its core, RPCP addresses the challenge of recovering a
low-rank matrix from an set of observations, along with

retrieving linear functionals based on a limited subset of
available data. This methodology is pivotal in scenarios
where the underlying data exhibits a mixture of low-rank
structure and sparse outliers, facilitating effective data
representation and analysis. Unlike traditional Principal
Component Analysis (PCA), which assumes that data is
clean and follows a Gaussian distribution.

Approaches such as Proximal-Gradient and ADMM are used
to solve this problem efficiently. In this report we delve into
an optimization procedure based on the dual formulation and
applications of this problem.

B. Previous Works

The study conducted in [4], gives the main idea of convex
optimization problem and delves into the part of the precise
recovery of a corrupted low-rank matrix. It is considered as
a robust extension of classical Principal Component Analysis
(PCA), and finds applications across diverse domains. The
study illustrates the superior performance and comparative
advantages of these novel algorithms through comprehensive
simulations, thus laying the groundwork for advancements in
robust low-rank matrix recovery techniques. Our work uses
these techniques as baselines for comparisons in different
applications.

RPCP extends the approach mentioned in [5] to handle
outliers and corrupted data. It aims to decompose an
observed matrix into two components: a low-rank matrix
representing the underlying structure of the data and a sparse
matrix capturing noise, outliers, or errors. We extended their
work to the dual formulation and refined in such a way that
it works on the real-world data by taking input as RGB
images. The papers cited above all prove the mathematical
validity and convex analysis of the approach, and our
mathematical analysis borrows ideas from this literature and
extended the work from the ideas derived by [6].

In contrast to these traditional techniques, deep learning
approaches such as the one explored in [7] propose CNN
based techniques to detect the foreground in videos. The
problem with these approaches is that they have to be trained
specifically to a certain domain and are not versatile across
applications. The deep-learning methods, when trained on
representative data, outperform conventional models in
scenarios with dynamic backgrounds and limited annotated
data, highlighting their robustness and effectiveness in real-
world applications. The conventional methods have the
advantage that they do not need any prior training and work
in real-time for zero-shot inference.

https://github.com/Sudhansh6/Low-Rank-Matrix-Recovery
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C. Contribution

We aim to analyse the primal-dual formulation and steepest
ascent method for the RPCP problem as done in [5].

Our novel contribution is to extend the ADMM and steepest
ascent for the dual formulation algorithms to applications
such as video foreground-background separation anomaly
detection in time-series data. We also extend these algorithms
to obtain consistent results in the presence of additive
Gaussian noise.

D. Organization of the Paper

In section II we discuss the modified optimization procedure,
derive its dual formulation and discuss the KKT conditions.
Following this, in section III we discuss the applied tech-
niques and their respective performance and convergence
rates. In this section, we also present the novel extension of
these procedures to new domain of applications. Finally, we
discuss the results in section IV and provide guidelines for
future work in section V.

II. PROBLEM STATEMENT

Given a data matrix D ∈ Rm×n with potentially corrupted
entries, we aim to find a low-rank matrix L ∈ Rm×n and a
sparse matrix S ∈ Rm×n such that D = L + S. More often,
D is corrupted with additive noise such as Gaussian, and the
exact reconstruction is not possible. In such cases, we resort
to a related optimization problem described below.

A. Primal Formulation

The Robust Principal Component Analysis as stated in Eq. 1
is given by

min
L,S
∥L∥∗ + λ|S|1, (2)

such that D = L+ S

where ∥.∥F represents the Frobenius norm and ϵ is a
parameter chosen based on the variance of the noise. Since
the nuclear norm ∥.∥∗ and the l1 norm ∥.∥1 are difficult to
handle with potentially undefined gradients, we consider the
dual norms to reformulate the primal problem.

The work in [6] obtains an augmented Lagrangian for this
primal formulation as

L(L, S, Y ) = ∥L∥∗ + λ∥S∥1+⟨Y,D − L− S⟩ (3)

+
µ

2
∥D − L− S∥F

They use an alternating minimizing procedure to solve this
optimization problem, and we summarized these results in
Section IV.

B. Dual Formulation

We use the results in [5] to derive the dual formulation using
dual norms. Using the definition of dual norm,

∥L∥∗ = max
Y

Tr(Y TL) s.t. ∥Y ∥2 ≤ 1

λ∥S∥1 = max
Y

Tr(Y TS) s.t. λ−1∥Y ′∥∞ ≤ 1

Through the results in [5], these dual variables will have the
same value at the optimum. The optimization problems can
be represented using Semi-definite programs, and using the
results in [8] (Appendix A.1), we can formulate the dual as

max
Y

min
L,S

Tr(Y TL) + Tr(Y TS) (4)

such that ∥Y ∥2 ≤ 1, λ−1∥Y ∥∞ ≤ 1

Consequently, we get

max
Y

Tr(Y TD) (5)

such that J(Y ) ≤ 1

since L + S = D. The matrices L, S can be recovered from
Y using the definition of dual norm.

C. KKT Conditions

The Lagrangian for the optimization problem can be derived
as

L(L, S, Y ) = ∥L∥∗ + λ|S|1 + ⟨Y,D − L− S⟩ (6)

Now we can derive the stationary conditions by taking the
gradient of our Lagrangian and setting it equal to 0.

∇LL(L, S, Y ) = ∥L∥∗ − Y = 0 =⇒ Y ∗ ∈ ∂∥L∗∥∗
∇SL(L, S, Y ) = ∇λ|S|1 − Y = 0 =⇒ Y ∗ ∈ ∂λ|S∗|1

The KKT conditions are summarized as follows for a
solution (Y ∗, L∗, S∗)

1) Primal Feasibility - D = L∗ + S∗ from Equation 2

2) Dual Feasibility - J(Y ∗) ≤ 1 from Equation 5

3) Stationary Point - Y ∗ ∈ ∂∥L∗∥∗ and λ−1Y ∗ ∈ ∂∥S∗∥1

4) Complementary Slackness - This is inapplicable in our
case since there are no inequality constraints in our
primal problem.

In conclusion, we must find an optimal solution (Y ∗, L∗, S∗)
that obey these conditions in order for strong duality to hold.

III. APPROACHES

These optimization problems can be solved using approaches
such as Accelerated Proximal Gradient (APG), Augmented
Lagrange Minimization (ALM), and Steepest Ascent on the
Dual Formulation.

Experiments in [6] show that the practical performance
of APG methods is not accurate in the absence of good
continuation schemes. In contrast, ALM methods achieve
good results and converge in very few iterations. We see
similar results in our experiments as summarized in IV.
However, ALM methods are not easy to scale to larger
matrices since the complexity is O(m3) (for S ∈ Rm×n

where m < n) due to SVD calculation.

The pseudocode for the ALM algorithm is summarized as
follows.
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Algorithm 1 RPCP by Alternating Directions
initialize: S0 = Y0 = 0, µ > 0

1 do
2 compute Lk+1 = Tµ(D − Sk − µ−1Yk)
3 compute Sk+1 = Sλµ(D − Lk+1 + µ−1Yk)
4 compute Yk+1 = Yk + µ(D − Lk+1 − Sk+1)
5 while not converged;

output : L, S

where Tµ(X) = USτ (Σ)V
T , X = UΣV T and Sτ (x) =

sgn(x)max(∥x∥− τ, 0). This approach works for noisy D as
well due to the augmented Lagrangian formulation.

As our contribution, we also implemented the steepest ascent
method for the dual formulation we derived in section II.
This method is faster in theory in comparison to ALM
since it does not require a complete SVD decomposition.
However, some implementation issues arise which slow down
the approach in practice, and it is not very robust to noise.
Nevertheless, the results are more accurate as outlined in the
next section. The pseudocode for this approach is given by

Algorithm 2 Robust PCP via the Dual
input : Observation matrix D ∈ Rm×n, λ.

6 Y0 = sgn(D)/J(sgn(D)) k ← 0 do
7 if ∥Yk∥2 > λ−1|Yk|∞ then
8 Dk ← π2(D); L← D; S ← 0

9 else if λ−1|Yk|∞ > ∥Yk∥2 then
10 Dk ← π∞(D); L← 0; S ← D

11 else
12 L← 0 S ← 0
13 do
14 L← π2(D − S); S ← π∞(D − L)
15 while not converged;
16 Dk ← L+ S

17 Yk+1 ← Yk + δk(D −Dk) k ← k + 1
18 while not converged;

output: (L, S)

where π2(.) and π∞(.) are projections into respective norm
spaces as described in [5].

IV. RESULTS

Video Foreground-Background separation

For this application, we linearize frames of a video and
concatenate these vectors as columns of the D matrix.

The hypothesis is that the static background of a video
forms the low-rank component of the matrix L, whereas
the foreground that is not present in all frames of the video
forms the sparse component S.

To improve the results on long videos, we form the matrix
using alternating frames, i.e, sample every 5th frame,
to improve the sparsity of the foreground and also the
consistency in the background.

The results using the ADMM approach are summarized
in Figure 1 where the optimization procedure successfully

separates foreground and background without many artefacts.
Performing hyper-parameter tuning yields the best λ = 0.001
and µ = 10. The number of steps in the algorithm is chosen
as 20, which gives impressive results in short duration (10
sec on Apple M1 Pro) for 60 frames.

We observe that this approach robustly separates the
foreground and background without any training in figure
1b and 1h. As mentioned in section I-B, these algorithms run
in real-time in zero-shot modality.

The steepest ascent approach for dual formulation is also
implemented for this application, and this also adds to our
novel contribution. This method has been executed on 30
frames of the video. The best hyperparameters for this
algorithm were λ = 0.001, β = 0.5 (in the gradient update
rule for line search from Pg 304 in [9]) and the steps to
converge is 10.

The results for this method as shown in figure 1e are better
compared to the ALM method. The results are summarised
in table I.

Method SSIM PSNR

Steepest Ascent for Dual 0.9296 33.34
Augmented Lagrange Minimization 0.7856 32.15

TABLE I: Foreground-Background Separation Results

Stock Price Analysis

In this application, we propose a novel hypothesis that equity
prices are linearly correlated and form a low-rank matrix and
the anomalies in the data form the sparse-noise. Each row of
our data matrix D represents the normalized value of a stock
over a fixed period. We claim that RPCP can be used to find
anomalies in stock prices to determine the global sentiment
in the economy. The impact of this formulation is realised
in medical applications such as despeckling ultrasound data
[10].

We compare this approach with Principal Component Anal-
ysis, and show thatw the low-rank recovery approach gives
superior results. We performed the analysis on commodities
such as Crude Oil, Natural Gas, equities such as Netflix,
Google, and crypto data such as Bitcoin obtained from
[11]. In figure 2, we see that the orange line indicates the
anomalies in the data.

In the analysis for gold price in figure 2b, the RPCP
procedure indicates an error (an upward spike) in the price
on March 17 2023. Articles show that the Federal bank
paused the interest rate around this time, resulting in people
buying gold as a hedge strategy.

Similar analysis for crude oil in figure 2a detected a spike
due to Russia-Ukraine War on 8 March 2022. The method
also identified the surge in natural gas prices in August due
to the war in figure 2c.

In figure 2d, we compare our method with PCA, and the
latter fails to detect any abnormalities in the data. This

https://www.reuters.com/markets/commodities/gold-poised-best-week-since-mid-nov-banking-sector-tension-2023-03-17/
https://www.bloomberg.com/news/articles/2022-03-07/oil-keeps-rising-as-russian-invasion-reverberates-across-markets
https://www.esma.europa.eu/sites/default/files/2023-10/ESMA50-524821-2963_TRV_Article_the_August_2022_surge_in_the_price_of_natural_gas_futures.pdf


Convex Optimization Project Report

(a) True Frame (b) Separated background using ALM (c) Separated foreground using ALM

(d) True Frame (e) Background using Dual steepest ascent (f) Foreground using Dual steepest ascent

(g) True Frame (h) Separated background (i) Separated foreground

Fig. 1: Foreground-Background using Low-Rank Matrix Recovery

approach can be used by portfolio managers to identify risk
factors in their respective portfolio.

V. CONCLUSION

In summary, we present the dual formulation for the Robust
Principal Component Analysis problem, and extend the
algorithms to novel applications such as anomaly detection.
We contrast the Augmented Lagrange Multiplier Approach
and Steepest Ascent methods for the foreground-background
separation task.

Future Work

The RPCP problem formulation assumes S is sparse in the
canonical basis. This can be enhanced by considering spar-
sity in other bases. For example, we can use this approach to
extract specific features from videos, e.g, faces, using trained
dictionaries. In this case, the problem formulation becomes

min
L,S
∥L∥∗ + ∥S∥1

such that D = L+DS

for a pre-trained dictionary D. Bases such as DFT or DCT
can be used to remove low-frequency or high-frequncy noise
from frames of a video. To the best of our knowledge, this
formulation has not been explored and is worth looking into.

Apart from the theoretical aspect, these algorithms can also
be tested for applications such as audio denoising and image
inpainting.

Tasks Assignment and Fulfillment

The tasks were distributed and fulfilled equally. Nipun has
worked on the experiments including ADMM and Time-
Series implementation. Sudhansh focused on implementing
steepest ascent for Dual formulation, analysing the per-
formance of algorithms and report organization. Priyanka
has worked on the theoretical formulations including KKT
conditions and rigorous derivation for the dual formulation.
Saketh has performed literature review and report write-up.
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(a) Crude Oil Analysis (b) Gold Analysis

(c) Natural Gas Analysis (d) Comparison with classical PCA

Fig. 2: Stock Price Analysis for anomaly detection

REFERENCES

[1] Dongjing Shan and Zhang Chao. Improved 1-tracker
using robust pca and random projection. Mach. Vision
Appl., 27(4):577–583, may 2016.

[2] Thierry Bouwmans, Sajid Javed, Hongyang Zhang,
Zhouchen Lin, and Ricardo Otazo. On the applications
of robust pca in image and video processing. Proceed-
ings of the IEEE, 106(8):1427–1457, 2018.

[3] Zhengdong Zhang, Yasuyuki Matsushita, and Yi Ma.
Camera calibration with lens distortion from low-rank
textures. In CVPR 2011, pages 2321–2328, 2011.

[4] Emmanuel J. Candes and Benjamin Recht. Exact matrix
completion via convex optimization, 2008.

[5] Zhouchen Lin, Arvind Ganesh, John Wright, Leqin Wu,
Minming Chen, and Yi Ma. Fast convex optimization
algorithms for exact recovery of a corrupted low-rank
matrix. 2009.

[6] Emmanuel J. Candes, Xiaodong Li, Yi Ma, and John
Wright. Robust principal component analysis?, 2009.

[7] Thangarajah Akilan, Q. M. Jonathan Wu, and Wandong
Zhang. Video foreground extraction using multi-view
receptive field and encoder–decoder dcnn for traffic
and surveillance applications. IEEE Transactions on

Vehicular Technology, 68(10):9478–9493, 2019.
[8] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Par-

rilo, and Alan S. Willsky. Rank-sparsity incoherence for
matrix decomposition. SIAM Journal on Optimization,
21(2):572–596, April 2011.

[9] Appendix c a guide to implementable algorithms. In
E. Polak, editor, Computational Methods in Optimiza-
tion: A Unified Approach, volume 77 of Mathematics
in Science and Engineering, pages 299–316. Elsevier,
1971.

[10] Sameera V. Mohd Sagheer and Sudhish N. George.
Ultrasound image despeckling using low rank matrix
approximation approach. Biomedical Signal Processing
and Control, 38:236–249, 2017.

[11] US stock market 2020 to 2024.
[12] Jan Lellmann. Convex optimization with applications

to image processing. Lecture Notes from https://www.
lellmann. net/work/ media/teaching/coip-mt13-web. pdf,
University of Cambridge, 2013.

[13] Shiqian Ma and Necdet Serhat Aybat. Efficient
optimization algorithms for robust principal component
analysis and its variants. Proceedings of the IEEE,
106(8):1411–1426, 2018.


	Introduction
	Motivation
	Previous Works
	Contribution
	Organization of the Paper

	Problem Statement
	Primal Formulation
	Dual Formulation
	KKT Conditions

	Approaches
	Results
	Conclusion

