
MathPrompter++: Improving the reasoning capabilities of LLMs on
numerical problems with robustness

Sudhansh Peddabomma
speddabomma@ucsd.edu

1 Introduction

Large Language Models (LLMs) often struggle
with arithmetic reasoning tasks, frequently pro-
ducing incorrect answers. Unlike natural language
understanding, math problems have a definitive
correct answer, making accurate solution genera-
tion a more difficult challenge for LLMs. Math-
Prompter addresses this problem leveraging zero-
shot Chain of Thought (CoT) to generate multi-
ple algebraic expressions or Python functions to
solve the same problem in diverse ways, thereby
boosting confidence in the results. This differs
from conventional CoT methods, where interme-
diate steps remain unchecked for correctness.

Yet, this method fails to leverage the LLMs
ability to reason through a problem step-by-step.
Through this project, I propose MathPrompter++
that embeds CoT in the steps to improve the accu-
racy while reducing the hallucinate rate. Further-
more, I compiled a new dataset DiverseMath that
serves as a better benchmark for reasoning in nu-
merical problems. The project report analyses dif-
ferent methods for this problem in detail and high-
lights the source of limitations and errors in each
method for future work.

1.1 Project Status
Phase 1 (Setting Up) - Read and understood the

paper. Found the limitations and suggest po-
tential improvements to the method. Setup
basic working code. Done

Phase 2 (Running Experiments at Scale) - Per-
formed experiments with 4o mini. Setup
Local LLM for Mac (this proved to be
more challenging) to minimize costs with
4o mini. Experimented with MLX library
with prompting and fine-tuning experiments.
Got MathPrompter running with local LLM.
Done

Phase 3 (Basic Improvements) - Suggested ba-
sic improvements in the code to improve
the performance. Initial version of Math-
Prompter++ that gets better results. Fixed
bugs in the code, and set up final working ver-
sions of the code with complete refactoring of
the codebase. Done

Phase 4 (New Dataset Preparation) - Com-
piled and filtered the DiverseMath dataset.
Rechecked all solutions with the help of
LLMs and manually solved many of them.
Done

Phase 5 (Final Drafting) - Obtaining significant
improvements with MathPrompter++ using
both 4o mini (done) and Local Llama model
(did not work well). Partially Done

I have ommitted many results and other analysis
from my work to account for the page limit of the
report.

Github - Sudhansh6/MathPrompterpp

2 Related work

LLMs have remarkable performance in single-
step system-1 (Stanovich and West, 2000) tasks
with task-specific few-shot or zero-shot prompt-
ing (Liu et al., 2021). However, LLMs struggle
with system-2 tasks that involve slow and multi-
step reasoning (Rae et al., 2022). The scaling laws
in the training and model size do not help with the
performance in such tasks.

Addressing these issues, (Wang et al., 2023) and
(Wei et al., 2023) introduce inference time reason-
ing through Chain of Thought (CoT) methodol-
ogy. The method essentially fed LLMs with the
step-by-step reasoning examples rather than stan-
dard question and answer examples. Such chain of

https://github.com/Sudhansh6/MathPrompterpp

thought demonstrations facilitate models to gen-
erate a reasoning path that decomposes the com-
plex reasoning into multiple easier steps. Notably
with CoT, the reasoning performance then satis-
fies the scaling laws better and jumps up with
the size of the language models. For example,
when combined with the 540B parameter PaLM
model [Chowdhery et al., 2022], chain of thought
prompting significantly increases the performance
over standard few-shot prompting across several
benchmark reasoning tasks, e.g., GSM8K (17.9%
→58.1%).

Then (Kojima et al., 2023) showed that LLMs
have inherent step-by-step reasoning capabilities
and introduced the paradigm of zero-shot CoT.
They showed that simply adding a prompt sim-
ilar to ”Let’s think step by step” replicates the
CoT reasoning and scales well for system-2 tasks.
It showed substantial improvement in mathemat-
ical reasoning with an improvement from 17.7%
to 78.7% on the (MultiArith, 2023) dataset. It
opened the potential of expanding the use of LLMs
in reasoning tasks in different domains to work
with deterministic problems.

Building on top of this zero-shot CoT frame-
work, MathPrompter (Imani et al., 2023) ex-
tended the notion of structured prompting to guide
the reasoning in LLMs. Particularly, the works ad-
dressed validation and confidence issues in typical
CoT workflows. Problems similar to math reason-
ing require reliable answers inspite of the proba-
bilistic generative nature of LLMs. a technique
that improves performance of LLMs on arithmetic
problems along with increased reliance in the pre-
dictions. MathPrompter uses the Zero-shot chain-
of-thought prompting technique to generate mul-
tiple Algebraic expressions or Python functions to
solve the same math problem in different ways and
thereby raise the confidence level in the output re-
sults. This is in contrast to other prompt based
CoT methods, where there is no check on the va-
lidity of the intermediate steps followed. Our tech-
nique improves over state-of-the-art on the Multi-
Arith dataset (78.7% → 92.5%) evaluated using
175B parameter GPT-based LLM.

However, there are some compromises with this
technique - although it leverages the impressive
zero-shot capabilities of LLMs, it does not really
use the CoT methodology. As a result, it struggles
with some complicated problems. Furthermore,
it enforces validity through strict checking in the

process. Consequently, with smaller models that
are not state-of-the-art and have high hallucination
rate, the method is unable to output an answer to
the question.

Through this work, I aim to critically test these
methods and improve their performance by con-
sidering the limitations and considerations from
the previous methods.

3 Datasets

The MathPrompter paper mainly contrasted the
performance of the models in the MultiArith
dataset. The dataset comprises of 600 word prob-
lems that are primary-school level and have a sin-
gle numeric (integer) answer. The problems are
simple - all the numbers are written as arabic nu-
merals and there are rarely units involved. An ex-
ample is shown below -

Q. A florist had 5 roses. If she sold 3 of
them and then later picked 34 more, how
many roses would she have?
A. 36

In addition, I also use the SVAMP (Patel, 2024)
dataset which has been used as a part of the open-
source implementation of MathPrompter (Kaspar,
2024). The dataset is similar to MultiArith but it
addresses some issues by increasing the complex-
ity of the problems and increasing the variety of
the problems.

However, there are some significant limitations
with the above datasets. As mentioned before,
there are no units involved, the final answers are
integers and the problems are simple requiring
only one or two basic operations to arrive at the
final answer. To address these issues, I composed
a new dataset called DiverseMath that consists
of 85+ numerical problems from different fields
of science including Chemistry, Physics, Biology,
Medicine and Economics -

• The reasoning steps are inter-twined with
world knowledge, formulae and other facts to
arrive at the answer. Such coupling tests the
recalling and reasoning capabilities of LLMs
together. The power of Chain of Thought
is much more emphasized in such paradigms
where the solution requires multiple steps of
reasoning.

• The problems involve many units (as is the

nature of these problems) that tests the ro-
bustness of the methods with many numbers
involved. As a result, the solutions require
multiple steps, including converting between
units, to arrive at the final answer which is
often a floating point.

The difficulty of the problems in the dataset arises
from the many numbers and constants involved
in each problem, floating point values, and world
knowledge required to solve the problems. Apart
from these aspects, the mathematical operations
involved are the same as the previous datasets. In
such manner, the dataset tests the ”reasoning” ca-
pabilities more thoroughly than the other datasets.
An example from the dataset is shown below -

Q. A gas occupies 2 L at 1 atm pressure.
If the pressure is increased to 3 atm at con-
stant temperature, What is the new volume
in liters?
A. 0.67

3.1 Data preprocessing and annotation

The MultiArith and SVAMP datasets have a sim-
ple structure and are already provided as a JSON
format that can be directly used to test the differ-
ent methods. These datasets do not require any an-
notation since the answers for the math problems
are already given as part of the dataset without any
noise. We use these fields directly to evaluate our
models.

For the DiverseMath dataset, I generated some
problems myself and used various Generative AI
tools (Perplexity, ChatGPT 4o mini, Anthropic
Claude Haiku) to generate more questions and
their answers. After generating a rough dataset,
I verified the solutions with other models (Chat-
GPT 4o mini, Claude Haiku) to flag the ones that
seem to have suspicious answers. Using this data,
I verified the solutions of the problems myself and
filtered the dataset to have questions which require
only basic operations (addition, subtraction, mul-
tiplication, division, exponentiation) for the solu-
tion. As a result of this process, starting from
a dataset roughly of size 150 problems, the final
dataset has 87 problems.

4 Baselines

As mentioned in the previous works section, I
work with two baselines:

1. Zero-shot CoT from (Kojima et al., 2023)

2. MathPrompter from (Imani et al., 2023)

In the original paper of Zero-shot CoT, the
authors had used a 175B parameter model (In-
structGPT - text-da-vinci-002) for their analysis.
They obtained 78.7% accuracy on MultiArith
(MultiArith, 2023) and 62.1% accuracy on
SVAMP (Patel, 2024) dataset. In my experiments,
I tested the latest ChatGPT 4o-mini model
(estimated to have 8B parameters but much
better performance due to RLHF training), and it
performed better on the datasets. The results are
summarized in Table 1.

LLM MultiArith SVAMP
DaVinci-002 78.7 62.1
GPT-4o-mini 96 84

Table 1: Accuracy (percentage) comparison of LLMs
on MultiArith and SVAMP benchmarks with (Kojima
et al., 2023). Note. The results for 4o-mini are summa-
rized from 100 randomized instance from the datasets.

We note that since GPT 4o-mini has much bet-
ter zero-shot capabilities, this method works really
well for the datasets.

The other baseline I have used for my analysis
is MathPrompter (Imani et al., 2023). Since there
is no official implementation of the technique, I
implemented the method by modifying the open-
source implementation (Kaspar, 2024). The per-
formance is slightly lower than the results claimed
in the paper. The decrement could be due to dif-
ferences from the official implementation. In the
paper, they have used the 175B parameter DaVinci
model, and we again use the GPT 4o-mini in our
experiments.

The statistical significance step in Math-
Prompter is skipped in the experiments. In the
initial tests, I did not see much performance gain
through this step. It mainly helps in reducing the
hallucination rate, but the gains are negligible for
our purposes considering the compute constraints.

The temperature is set to 0.0 for consistency
throughout the experiments, and the maximum
output size for tokens is set to 200 which is am-
ple enough for all the methods to work correctly.
However, it must be noted that CoT based meth-
ods use much higher number of tokens in output as
compared to MathPrompter since the latter simply

generates algebraic expressions and Python code.
These representations are succinct and capture the
similar amount of information as the CoT based
steps.

4.1 Hallucination
Since the zero-shot CoT methods do not have any
validation steps, they often tend to hallucinate.
The answer generated could be wrong due to mul-
tiple reasons - the steps of reasoning are wrong,
the calculations in the steps may be wrong, or
there might be a missing step. On the other hand,
MathPrompter enforces strict checks through the
MathPrompts steps to ensure that the answer is
consistent across multiple methods. Since each
method in the math prompting step is an indepen-
dent way of thought for the solution, there is a high
probability that the methods do not align with one
another. As a result, in many cases, the method
does not yield a final answer due to lack of consis-
tency across the methods. In MathPrompter++, we
propose a rough solution step to provide an align-
ment that narrows down the reasoning space for
the algebraic and code generation methods and im-
prove the consistency with one another. However,
it must be noted that the if the alignment provided
by the rough solution itself is wrong, then it can
result in a high hallucination rate. In summary,
MathPrompter++ trades off the strict consistency
requirements of MathPrompter to introduce Chain
of Thought thinking to better tackle complex prob-
lems.

5 Approach

Through this work, I have identified the limitations
of MathPrompter particularly in regards to robust-
ness, addressing complexities and deployment on
much smaller models locally. As my contribu-
tion, I am proposing a modified method, Math-
Prompter++, that has the following optimizations

• Streamlined code that has been completely
re-factorized to reduce the computational
complexity and unnecessary initializations

• More robust prompting methods with diverse
few-shot examples and rules to guide the
LLM

• Embedded Chain of Thought reasoning -
A rough-solution generation step before the
math-prompts to allow LLM to think about
the problem step-by-step.

5.1 Contributions

In the code, the scripts corresponding to my
methods and the baselines are present in the
FinalCode folder. The initial code has
been forked from the opensource MathPrompter
implementation (Kaspar, 2024). The imple-
mentation of MathPrompter++ is present in
methods/MathPrompterpp.py. My contri-
bution to the code base in addition to the changes
mentioned above are:

• Integration of Local LLM to run on Mac ar-
chitectures using mlx library

• A new dataset comprising of 85+ math-
ematical reasoning questions from differ-
ent fields of science including Chemistry,
Physics, Biology, Medicine and Economics.
The dataset can be found at the file
FinalCode/data/domain.json

• Restructuring of the code to provide better in-
sights across the methods

• Addition of Zero-shot CoT method

• Integrating MathPrompter++ within the
codebase

The .ipynb files run the evaulation of all the
methods on the datasets.

5.2 Method

As we have seen in the Section 4, LLMs have
impressive zero-shot abilities in terms of think-
ing about a given problem step-by-step. In Math-
Prompter, although the method takes advantage of
zero-shot capabilities of the models, it does not ap-
proach the problem at hand in a step-by-step man-
ner. If the problem is complex, then approach-
ing the problem in a step-by-step manner helps
break down the complexity into approachable sim-
ple steps. Writing a Python code for a problem
implicitly involves some Chain of Thought rea-
soning, however, having an explicit CoT step can
significantly reduce the hallucinations. Such ap-
proach is also seen amongst students, wherein they
form a rough solution on how to approach the
problem before they actually start writing down
the solution.

With this motivation, we introduce a rough so-
lution step in the MathPrompter++ method - we
prompt the LLM to draft out a series of steps that

outline how to solve the given problem. Further-
more, this step also jots down any known math-
ematical shortcuts, formulae and results that can
help solve the problem. It mainly helps manifest
the logic to be used in the problem.

This way, we have embedded CoT Reasoning in
MathPrompter. Once we have this rough solution,
we use the other steps - Algebraic template, Math
Prompts, and Compute Verification to obtain the
final solution. However, in comparison to Math-
Prompter, we use improved prompting techniques
to help with the robustness of the solution.

These improved prompts benefit the later stages
to extract the answer. For example, for the same
question, we get the following algebraic expres-
sions and Python code from both the methods. An
example flow for MathPrompter++ building on the
previous example is shown in the Figure

In summary, with the modified approach, the
hypothesis is that the method can make use of CoT
capabilities of the LLMs and use the techniques
from MathPrompter to ensure validity and confi-
dence in the solution. As a result, the hallucination
rate should decrease while increasing the accuracy
of the method.

6 Experiments

We compare the accuracies and hallucination rate
for the three methods (Zero-shot CoT, Math-
Prompter, MathPrompter++) on the MultiArith
(MultiArith, 2023), SVAMP (Patel, 2024) and the
DiverseMath datasets.

The underlying model is ChatGPT 4o-mini,
which is a paid API service. To evaluate 100 ques-
tions in the dataset, the runtime for the three meth-
ods is approximately 25 minutes based on the net-
work limitations and rate limits with the API.

The results for the three methods are summa-
rized in Table 2

6.1 Observations

6.1.1 Accuracy
Both MathPrompter and MathPrompter++ achieve
higher accuracy than zero-shot CoT on the Di-
verseMath dataset. This result shows that the va-
lidity of solutions generated by these methods is
much higher. As a consequence, the hallucination
rates are also much lower as discussed in the next
section.

However, the performance of MathPrompter is
not as high as claimed by (Imani et al., 2023).

As mentioned before, this discrepancy could have
arose due to differences from the official imple-
mentation. As a result, the MathPrompter based
methods do not perform as well as the zero-
shot CoT method as should have been the case.
Nonetheless, in many cases, MathPrompter++ is
close to the zero-shot CoT baseline or surpasses it.
Furthermore, although the numbers are represen-
tative of the dataset, the results may include noise
since the metrics are only computed over 100 in-
stances from the datasets. Nevertheless, we can
make inferences about the trends from these re-
sults.

In all the zero-shot settings MathPrompter++
performs better than MathPrompter. The perfor-
mance gain is significantly higher for the Diverse-
Math dataset. On the other hand, in the few-shot
settings, although MathPrompter++ achives sig-
nificantly higher performance than MathPrompter
in MultiArith and SVAMP dataset, it has a lower
accuracy on the DiverseMath dataset. The rea-
son for this is that the few-shot prompts for the
rough solution generated in the MathPrompter++
method can bias the model to think in a specific
manner that can often mislead and result in wrong
solutions. In the zero-shot cases the model can ar-
rive at the solution without any biases presented
by the template prompts. Better template prompts
can improve the performance of these methods in
few-shot settings as well.

The Figure 1 shows in-depth comparison of the
accuracies in the steps involved in each method.

6.1.2 Hallucinations
The results for the hallucination rates in the mod-
els is shown in the Figure 2

The hallucination rate for the Chain of Thought
method is significantly high. In particular, it is
very high in the DiverseMath dataset. It is ex-
pected since the questions in this dataset have
many constants and numbers involved along with
different domain-specific results. Since there are
no validation checks, the results can often be
wrong. The hallucination for the MathPrompter
method for the DiverseMath dataset is also very
high, and MathPrompter++ brings it down by a
significant amount.

As theorized, MathPrompter++ significantly
lowers the hallucination in all the zero-shot set-
tings. However, as seen in the accuracy case,
the hallucination for the few-shot setting decreases
with MultiArith but increases with SVAMP and

Method
Zero-shot

CoT
MathPrompter

(Zero-shot)
MathPrompter++

(Zero-shot)
MathPrompter

(Few-shot)
MathPrompter++

(Few-shot)
MultiArith 96 86 89 90 98

SVAMP 84 79 83 71 82
DiverseMath 49.41 60.00 62.35 69.41 65.88

Table 2: Accuracy comparison of various methods across different mathematical reasoning benchmarks in both
zero-shot and few-shot settings using GPT 4o-mini.

Figure 1: The figure represents the accuracies of different methods across all the datasets. The accuracies of the
algebraic and coding methods are also shown in the figure. Higher is better.

Figure 2: The figure represents the accuracies of different methods across all the datasets. The accuracies of the
algebraic and coding methods are also shown in the figure. Lower is better. Chain of Thought has significantly high
hallucination rates. MathPrompter++ brings down the hallucination in many cases as compared to MathPrompter.

DiverseMath datasets. This could be due to the
bias introduced by the rough solution that leads
the model to the wrong answer.

6.2 Error analysis

Table 3 highlights the major source of errors for
each model. We show the results for the zero-shot
based MathPrompter methods.

As highlighted in the previous sections, the ma-
jor source of error in Chain of Thought is from
the lack of validation in the steps. In some cases,
CoT methods exceed the number of tokens which
causes issues in the answer extraction steps. The
answer extraction for the zero-shot CoT method is
done using a regular expression which is prone to
errors.

Question Zeroshot CoT MathPrompter MathPrompter++
Q. A protein biomarker
concentration is 25
ng/mL in diseased
state. What is its
concentration in µg/L?
A. 25000

To convert the concen-
tration from ng/mL to
µ g/L, we can follow
these steps:
1. Understand units:
- 1 ng (nanogram) =
0.001 µ g (microgram)
- 1 mL (milliliter) = 1
L (liter) = 1000 mL
...
Tokens exhausted be-
fore next prompt
25 ng/mL is equivalent
to 25 µg/L. ✗

Inconsistency between
methods
Variable Mapping:
{var A: 25}
Algebraic answer

Answer = var A*1000

Returns 25000 ✓

Python code

def

solution(var A):

return var A * 1.0

Returns 25 ✗

Wrong rough solution
Rough Solution.
1. Identify the con-
version factor between
ng/mL and µg/L. Rec-
ognize that 1 ng/mL is
equivalent to 1 µg/L
since both are mea-
sures of concentration
in different units.
...
Returns 25 ✗

Q. Danny collects bot-
tle caps and wrappers.
He found 66 wrappers
and 39 bottle caps at
the park. Now he has
16 bottle caps and 68
wrappers in his collec-
tion. How many wrap-
pers did Danny have at
first?
A. 2

Answer Extraction er-
ror
To find out how many
wrappers Danny had
at first, we can break
down the information
given in the problem.
. . .
To find out how many
wrappers Danny had at
first, we can set up the
equation based on the
information provided.
. . .
Answer Extracted: 1 ✗

Inconsistency between
methods
Variable Mapping:
{var A: 66, var D: 68}
Algebraic answer

Answer = var D -

var A

Returns 2 ✓

Python code

def solution(var A,

var D):

return var A +

var D

Returns 134 ✗

Inconsistency between
methods
Variable Mapping:
{var A: 66, var C: 16,
var D: 68}
Algebraic answer

Answer = var D -

var A

Returns 2 ✓

Python code

def solution(var A,

var C, var D):

return var A +

var C - var D

Returns 18 ✗

Table 3: Major Errors in each of the methods on zero-shot prompting with ChatGPT 4o mini

In MathPrompter, the major source of error is
the discrepancy between the methods used. When
the methods don’t match, this method does not
yield a final value. This is a beneficial thing since
it reduces the hallucination substantially by attack-
ing the problem from multiple perspectives.

MathPrompter++ hallucinates when the rough
solution itself is in the wrong direction. We have
seen this happen in the few-shot instances and also
from the examples shown in the table. The rough
solution step should improve the accuracy but it
may increase the hallucinations if the underlying
model is not very good. In theory, if the under-
lying model is good, then the hallucination will
decrease since there is a reasoning step added to
arrive at the final answer. Nevertheless, some-
times the rough solution causes errors to arise in
this method.

In some cases, the errors in the MathPrompter
methods arise due to rounding errors - algebraic
expressions round to integer whereas the Python
code uses floor operation. These can be prevented
with better coding solutions.

7 Conclusion

MathPrompter is an intuitive method that draws
on the techniques used by students when they ap-
proach a math problem. However, it does not
leverage the CoT capabilities of the underlying
models. With MathPrompter++, I have shown that
this is a potential direction of research. The per-
formance of these methods is very poor when a
smaller LLM is used underneath. For instance, I
obtained below 10% accuracy on the datasets with
Llama 3.2 1B 4-bit model on all the datasets. In
future, these methods can be improved to achieve

higher accuracies with lower hallucination rates
with smaller fine-tuned models.

In my implementation, I could not get Math-
Prompter achieve the same level of accuracies as
claimed in the paper, and this proved to be very
challenging. Furthermore, the improvements with
the techniques I tried were marginal and they did
not consistently improve the results. I got the idea
of compiling a new dataset towards the end, and
this experiment provided valuable insights and un-
derstanding of the methods. I performed another
set of experiments using Llama 3.2 1B 4-bit, a
quantized efficient model that can be run locally
on a Macbook with M1 Pro 16Gb unified mem-
ory. These results can be improved in the future.

Overall, the project has provided valuable in-
sights into how LLMs work, robust prompting
methods and working with deterministic problems
using these non-deterministic generative tools.

8 Acknowledgements

As mentioned previously, I used ChatGPT, An-
thropic Claude and Perplexity to help generate the
DiverseMath dataset. I used them to aid with the
verification of the data as well. In the report, I
used these tools to help generate initial templates
for figures, tables and other LATEXspecific syntax.

References
Imani, S., Du, L., and Shrivastava, H. (2023). Mathprompter:

Mathematical reasoning using large language models.

Kaspar, R. (2024). Mathprompter. https://github.
com/RamonKaspar/MathPrompter. Accessed on
December 05, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y.
(2023). Large language models are zero-shot reasoners.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. (2021). What makes good in-context examples for gpt-
3?

MultiArith (2023). Multiarith dataset. https:
//huggingface.co/datasets/ChilleD/
MultiArith. Accessed on December 05, 2024.

Patel, A. (2024). Svamp. https://github.com/
arkilpatel/SVAMP. Accessed on December 05,
2024.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J.,
Song, F., Aslanides, J., Henderson, S., Ring, R., Young,
S., Rutherford, E., Hennigan, T., Menick, J., Cassirer, A.,
Powell, R., van den Driessche, G., Hendricks, L. A., Rauh,
M., Huang, P.-S., Glaese, A., Welbl, J., Dathathri, S.,
Huang, S., Uesato, J., Mellor, J., Higgins, I., Creswell,
A., McAleese, N., Wu, A., Elsen, E., Jayakumar, S.,
Buchatskaya, E., Budden, D., Sutherland, E., Simonyan,

K., Paganini, M., Sifre, L., Martens, L., Li, X. L., Kun-
coro, A., Nematzadeh, A., Gribovskaya, E., Donato, D.,
Lazaridou, A., Mensch, A., Lespiau, J.-B., Tsimpoukelli,
M., Grigorev, N., Fritz, D., Sottiaux, T., Pajarskas, M.,
Pohlen, T., Gong, Z., Toyama, D., de Masson d’Autume,
C., Li, Y., Terzi, T., Mikulik, V., Babuschkin, I., Clark,
A., de Las Casas, D., Guy, A., Jones, C., Bradbury, J.,
Johnson, M., Hechtman, B., Weidinger, L., Gabriel, I.,
Isaac, W., Lockhart, E., Osindero, S., Rimell, L., Dyer,
C., Vinyals, O., Ayoub, K., Stanway, J., Bennett, L., Hass-
abis, D., Kavukcuoglu, K., and Irving, G. (2022). Scaling
language models: Methods, analysis insights from train-
ing gopher.

Stanovich and West (2000). Record on psycnet. PsycNET.
Accessed on December 05, 2024.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. (2023). Self-consistency
improves chain of thought reasoning in language models.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E., Le, Q., and Zhou, D. (2023). Chain-
of-thought prompting elicits reasoning in large language
models.

https://github.com/RamonKaspar/MathPrompter
https://github.com/RamonKaspar/MathPrompter
https://huggingface.co/datasets/ChilleD/MultiArith
https://huggingface.co/datasets/ChilleD/MultiArith
https://huggingface.co/datasets/ChilleD/MultiArith
https://github.com/arkilpatel/SVAMP
https://github.com/arkilpatel/SVAMP

